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ABSTRACT

In the past decade there has been a significant growth in the number of de-

vices consuming data traffics. Billions of mobile data devices are now connected

to the global wireless network. Real-time audio, video, and virtual reality appli-

cations require reliable wireless communications with high data throughput. One

way to meet these requirements is increasing the number of transmit and/or re-

ceive antennas of the wireless communication systems. Massive multiple-input

multiple-output (MIMO) has emerged as a promising candidate technology for

the next generation (5G) wireless communications. Massive MIMO increases the

spatial multiplexing gain and diversity gain by adding a large number of antennas

to the base stations (BS) of wireless communication systems. However, design-

ing efficient algorithms to decode transmitted signal with low complexity is a big

challenge in massive MIMO. In this dissertation, we design and analyze novel al-

gorithms to achieve near-optimal or optimal performance for coherent data detec-

tion, and joint channel estimation and signal detection in massive MIMO systems.

The dissertation consists of three parts depending on the number of users at the

transmitter side.

In the first part, we assume the channel state information is known at the

receiver. We introduce a probabilistic approach to solve the problem of coherent

signal detection using an optimized Markov Chain Monte Carlo (MCMC) algo-

rithm. Two factors contribute to the speed of finding the optimal solution by the

iv
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MCMC detector: The probability of encountering the optimal solution when the

Markov chain converges to the stationary distribution, and the mixing time of the

MCMC detector. First, we compute the optimal value of the “temperature” pa-

rameter such that the MC encounters the optimal solution in a polynomially small

probability. Second, we study the mixing time of the underlying Markov chain of

the proposed MCMC detector.

In the second part, we consider optimal non-coherent signal detection for

massive MIMO systems, when the channel state information is unknown at the

receiver. We develop and analyze an optimal joint channel estimation and signal

detection algorithm for massive (single-input multiple-output) SIMO wireless sys-

tems. We propose exact non-coherent data detection algorithms in the sense of

generalized likelihood ratio test (GLRT). In addition to their optimality, these pro-

posed tree search based algorithms provably have low expected complexity and

work for general constellations. More specifically, despite the large number of the

unknown channel coefficients for massive SIMO systems, we show that the ex-

pected computational complexity of these algorithms is linear in the number of

receive antennas (N) and polynomial in channel coherence time (T). We prove that

as N →∞, the number of tested hypotheses for each coherent block equals T times

the cardinality of the constellation. Simulation results show that the optimal non-

coherent data detection algorithms achieve significant performance gains (up to 5

dB improvement in energy efficiency) with low computational complexity.

In the third part, we consider non-coherent data detections for the uplink

v
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transmissions of TDD massive MIMO systems. We propose an GLRT-optimal al-

gorithm for joint channel estimation and data detection in massive MIMO sys-

tems. We show that the expected complexity of our algorithm grows polynomi-

ally in the channel coherence time (T). The proposed algorithm is novel in two

aspects. First, the transmitted signal can be chosen from a general constellation,

constant-modulus or nonconstant-modulus. Second, the algorithm offers the ex-

act optimal solution with expected complexity polynomial in the coherent block

interval. Simulation results demonstrate significant performance gains of our ap-

proach compared with suboptimal non-coherent detection schemes. To the best of

our knowledge, this is the first algorithm which efficiently achieves GLRT-optimal

non-coherent detections for massive MIMO systems with general constellations.

vi
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PUBLIC ABSTRACT

In the past decade there has been a significant growth in the number of de-

vices consuming data traffics. Billions of mobile data devices are now connected

to the global wireless network. Real-time audio, video, and virtual reality appli-

cations require reliable wireless communications with high data throughput. One

way to meet these requirements is increasing the number of transmit and/or re-

ceive antennas of the wireless communication systems.

Massive multiple-input multiple-output (MIMO) has emerged as a promis-

ing candidate technology for the next generation (5G) wireless communications.

Massive MIMO increases the spatial multiplexing gain and diversity gain by adding

a large number of antennas to the base stations (BS) of wireless communication sys-

tems. However, designing efficient algorithms to decode transmitted signal with

low complexity is a big challenge in massive MIMO.

In this dissertation, we design and analyze novel algorithms to achieve

near-optimal or optimal performance for coherent data detection, and joint channel

estimation and signal detection (JED) in massive MIMO systems. Our proposed al-

gorithms decode the noisy received signal offering polynomial complexity in the

coherent block interval. In addition, the transmitted signal can be chosen from any

constellation including nonconstant-modulus constellations like 16-QAM. To the

best of our knowledge, the proposed algorithms in this dissertation are the state-

of-the-art to achieve JED for massive MIMO systems.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

The central aim of modern wireless communication systems is to provide

better service quality, higher data rates and larger accessibility under any circum-

stance. The wide prevalence of modern wireless devices like smartphones, tablets,

and laptops has fueled an extensive growth in wireless data traffic. According to

Cisco’s visual networking index (VNI) forecast, the global mobile data traffic be-

tween 2015 and 2020 is projected to increase 8-fold, and three-fourths of the world’s

mobile data traffic will be video [1]. Figure 1.1 illustrates the exponential increase

in mobile data traffic. Wireless data traffic will grow at a compound annual growth

rate (CAGR) of 53 percent from 2015 to 2020, reaching 30.6 exabytes per month by

2020.

In order to meet this explosive growth in data traffic and user density, devel-

oping new technologies for future wireless communication is required. These tech-

nologies need to improve the wireless systems throughput by increasing either the

communication channel bandwidth or the spectral efficiency. Based on the United

States’ frequency allocation chart in 2016 [2], we can see that increasing the band-

width is limited by the scarcity in the favourable communication frequency ranges

and the paucity of the radio spectrum which is already over exploited. Adding an-

tennas to the communication terminals is an effective way to increase the spectral
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Figure 1.1: Global Mobile Data Traffic by 2020 [1].

efficiency. With the current fourth-generation (4G) mobile communication technol-

ogy, improving the spectral efficiency is limited since 4G allows only up to 8 anten-

nas at each base station (BS). The upcoming fifth-generation (5G) communication

systems call for employing massive multiple-input multiple-output (MIMO) tech-

nologies. In fact, massive MIMO allows one to add hundreds or even thousands

of antennas at a BS. This significant leap in the number of antennas at the wireless

communication stations potentially increases the spectral efficiency. Thereby sev-

eral autonomous users can simultaneously communicate with high throughput in

the same time-frequency resources.

Massive MIMO is a promising candidate technology for future wireless

communications. It promotes the attractive advantages of increasing the system

capacity, and potentially reducing the transmitting power. However, in order to

achieve the promises of massive MIMO, the receiver terminal needs to know the

communication channel characteristics. Also, decoding the huge stream of the
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transmitted data involves a tradeoff with the complexity of signal processing. Con-

sidering the unprecedented number of antennas at the BS, estimating the channel

elements and detecting the transmitted signal will be a big challenge.

In this dissertation, we investigate near-optimal or optimal channel estima-

tion and signal detection in massive MIMO systems. Our focus is on developing

and proposing new efficient algorithms massive MIMO signal detection. In fact,

we developed an asymptotically optimal detection algorithm for large scale coher-

ent MIMO systems. In addition, we proposed optimal noncoherent signal detec-

tion algorithms for massive SIMO and MIMO systems with low complexity.

1.2 Massive Multi-User (MU) MIMO Systems

In the foreseeable future there will always be a sustainable growth in the

indispensable mobile communication commodity and users’ density. Accordingly,

the data traffic carried by global wireless networks continues to increase in an ex-

ponential trend [3], [4]. This ever increasing demand for wireless data traffic and

better service quality obligates the operators to invest in new technologies includ-

ing improving reliable and high capacity links. A great amount of research has

focused on increasing the capacity of wireless communication channels through

spacial multiplexing. Massive MIMO is conceived as a fundamental technology

for the next generation of wireless communication [5]. Massive MIMO relies on

adding numerous antennas at one or both sides of wireless communications.

Adding multiple antennas at the receiver side was traditionally known as
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a viable technique to leverage spatial diversity and mitigate multiple path fading.

However, Foschini and Telatar [6], [7] show that utilizing multiple antennas at the

transmitter and the receiver enlarges the wireless system spectral efficiency. It has

been shown, under ideal channel estimation, the capacity of the MIMO system

increases linearly with the min{M,N} for a scattering environment, where M , and

N are the number of receive and transmit antennas respectively. Marzetta and

Hochwald in [8], [9] extended the previous work on MIMO systems using a block

fading channel model for unknown channel state information (CSI) at the receiver.

In addition, they show that channel capacity is limited by the coherence time T

and it is pointless to increase N beyond T since the link capacity will not change.

For non-coherent channel, [10] finds a general expression for the channel capacity

using geometric approach. [10] shows that the capacity of non-coherent systems

reaches that of systems with perfect CSI when T →∞.

A pioneering work of Marzetta [11] in noncooperative cellular wireless sys-

tems reveals the idea of massive (large scale) MIMO systems by equipping the

communication terminals with a huge number of antennas. [11] mathematically

showed that the effect of fast fading and non-correlated noise is eliminated as the

number of receive antennas approaches infinity. Since then, extensive research has

been invested in massive MIMO. For example, massive MIMO systems’ information-

theoretic and propagation aspects are discussed in [12], [13]. Research on massive

MIMO has also focused on many other aspects, including transmit and receive

schemes, the effect of pilot contamination, energy efficiency, and channel estima-
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tion as reviewed in [14], [15]. Massive MIMO wireless systems are proposed as a

emerging new technology which reaps the benefits of the traditional MIMO sys-

tems on a much larger scale.

Massive MIMO technology can be used in a multi-cell multi-user MIMO

(MU-MIMO) system, where multiple cells exist with one BS in each cell. These BSs

are equipped with a large number of antennas, hence they send massive data traffic

to a large number of users. The more antennas are equipped in each BS, the higher

degree of freedom is offered. Accordingly, MU-MIMO technology deals with all

the users in the whole network at the same time. The users are differentiated from

each other according to their spatial signature. Also, the users are simultaneously

served in the same time-frequency resources. MU-MIMO improves system perfor-

mance without increasing the transmitted power since it enables high data rate.

Massive MU-MIMO systems can be demonstrated in a cellular network ar-

chitecture, where every 7 cells form a cluster. Each BS’s cell provides service for

multiple users each of whom is equipped with single or multiple antennas. Figure

1.2 illustrates massive MU-MIMO system of L cells with K single antenna user

terminals (UTs). Each BS handlesN number of antennas. Furthermore, we assume

known CSI at the BS through specific training scheme depending on which system

protocol 1is using.

1Time-division duplex (TDD): Duplexing mode where both communication parties
share the same frequency band for transmitting and receiving the information. Frequency-
division duplex (FDD): Duplexing mode where the communication parties use different
frequency bands for transmitting and receiving the information.
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Cell j

Cell l

Figure 1.2: 7-cells cellular systems. Each BS equipped with N antennas and K users.

During the uplink (UL)2, the channel model for MU-MIMO system can be

represented as a linear combination of channel matrices from all the cells.

yj =
L

∑
l=1

Hjlxl +wj, (1.1)

where yj is the received vector at the j-th base station, Hjl = [hjl1 hjl2 ⋯ hjlK] is

the N ×K channel matrix between the users of the l-th cell and the j-th BS, xl is

the transmitted vector from the users in cell l. hjl1 is usually modeled based on a

2It is the transmission mode in which the information data transmitted from the UTs to
the base station, and it calls forward link as well.
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deterministic correlation matrix and independent of fast-fading channel vector.

In downlink (DL)3 phase, the received symbol by the m-th UT in the j-th

cell is represented as:

yjm =
L

∑
l=1

hHjlmsl +wjm, (1.2)

where sl is the transmitted vector from the l-th BS, and wjm is the noise at the m-th

user of the j-th cell. In this setting, we assume TDD operation multiplexing mode

which acquired by massive MIMO systems. Hence we assume channel reciprocity

so that the downlink channel is the transpose of the uplink channel. The transmit-

ted vector sl is represented by the precoding matrix Al = [al1 al2 ⋯ alK] ∈ CN×K and

the downlink transmitted data vector xl which contains the information symbols

for the K UTs in cell l,

sl =
K

∑
k=1

alkxlk = Alxl. (1.3)

The achievable rate of MU-MIMO network quantifies massive MIMO per-

formance [13]. However, the ultimate achievable rate of the MU-MIMO systems

is limited by interference, channel estimation error, and pilot contamination [16].

In addition, since most optimal performance detection algorithms obtain exponen-

tial complexity in system dimension, linear processing schemes are used instead

in the down and up link signal detection like maximum ratio combining (MRC),

Zero-Forcing (ZF), and minimum mean-square error (MMSE). These schemes for a

large number of BS’s antennas can demonstrate nearly-optimal performance [11].

3It is transmission mode in which the information data transmitted from the base sta-
tion to the UTs, and it calls revers link as well.
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1.3 Advantages of Massive MU-MIMO

Massive MU-MIMO is a potential technology for the future mobile commu-

nication since it increases wireless network throughput and reliability. We sum-

marize the advantages of massive MU-MIMO as follows:

1. Increasing channel capacity and system reliability: For MU-MIMO systems with

a large number of receive antennas at the BS and K number of users, we can

increase the throughput without increasing the transmit power by simply

increasing N and K. As N →∞, we can apply the law of large numbers to ob-

tain a favorable propagation environment where the channel matrix columns

pairwisely orthogonal. As a result of the favorable propagation, the channel

capacity during the UL mode can be computed as follow,

C = log2K(1 +Nρu),

where ρu is the UL SNR, K is the multiplexing gain4, and N is the array gain.

So, as the system dimension increases, the spectral efficiency increases and

equivalently system reliability.

2. Reducing transmitting power, increasing energy efficiency: Due to coherent com-

bining, the transmitted power proportions inversely with the number of trans-

mitted antennas Pt ∝ 1/nt. Thus a massive reduction in the transmit power

can be obtained as the number of transmit antennas increases. Since the ef-

4The multiplexing gain is min{K,N}.
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fective SNR in massive MIMO systems is (ρuN ), transmitted power can be

reduced by a factor of two as the N doubles maintaining the same quality

of service [13]. During the DL, massive MIMO systems able to intensify the

transmitted signal in one region since all the focused emitted signals can be

collected accumulatively in a certain spot. Nevertheless, interference would

occur due to distraction in the transmitted signal, which can be solved by

using some precoding techniques. Also, increasing the array aperture po-

tentially leads to increased system resolution and effectively mitigates envi-

ronmental and health concerns which related to high transmitted power of

mobile communications [12].

3. Reducing component cost and improving robustness: In contrast to conventional

MIMO systems, massive MIMO systems use hundreds of cheap milli-Watt

amplifiers instead of multiple expensive high power amplifiers. Further, it

eliminates the need for the coaxial cables which used to connect the BS com-

ponents, and hence reduces the system implementation cost [12]. Using large

number of amplifiers makes massive systems unconstrained by the accuracy

and linearity of individuals. Malfunctions in several antennas will not effec-

tively reduce system performance [15].

4. Improving system security: Cyber-security threats is a serious growing concern

since large number of international jamming makes substantially harmful

interference to the communication system and costs a lot of money. A MU-
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MIMO systems with a sustainable large number of antennas, constantly have

a large number of degree of freedom which can be used to cancel jamming

[17]. Also, using joint channel estimation and cleaver decoding for a massive

MIMO systems could be effectively able to render jamming problem [15].

5. Mitigating latency and simplifying signal processing: Latency in the transmit sig-

nals is one of the problems that limits the performance of any wireless com-

munication system. In particular, under fast fading scenarios, the transmitted

signal is prone to get trapped in a fading dip due to multiple paths traveling.

Fading renders the transmitted signal into weak small signals. The surplus

number of antennas at each BS of MU-MIMO systems enlarges drastically the

degree of freedom since channel matrix has a very low rank (large nullspace).

The large number of antennas causes channel hardening [11], thereby the

random channel matrices in massive MIMO become nearly determinist [12].

Also, the interference will depend mainly on the number of DoF per UT and

not directly on N [13]. In essence, using additional antennas reduces poten-

tial interference effects and averages out fading and thermal noise.

1.4 Challenges in Massive MIMO Systems

Even though increasing the number of antennas has many advantages, there

will be numerous challenges associated with massive MIMO techniques. We sum-

marize the challenges as follows:

1. Channel Estimation: Knowledge of the channel state information (CSI) is es-
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sential for the sake of achieving the substantial advantages of massive MIMO

systems [14]. During the UL mode, the K active users send training se-

quences to the BS which uses these code sequences to estimate the channel.

Training blocks length is usually scaled with the number of active users, and

their columns are mutually orthogonal in order to mitigate inter symbol in-

terference [18]. With a limited number of users, this estimation technique can

be viable. In contrast, for highly densified areas, like cells associated with

massive MU-MIMO, the excessive number of unknown channel parameters

presents a big challenge on accurately estimating the channel gains [16]. First,

the pilot block will share a part of the coherent block which could be used for

sending information data. In fast fading environments the channel parame-

ters change rapidly. A tradeoff between estimating the channel accurately by

sending more pilot signals or using this fraction of pilot sequences to trans-

mit real data will kick off. Second, constricting perfectly orthogonal code se-

quences is limited in practice, and replaced with quasi-orthogonal sequences

which impose a substantial harmful interference. In the case of conventional

MIMO systems, differential modulation techniques, blind and semi-blind,

and pilot based algorithms are used to solve the problem of acquiring the

CSI [19]–[22]. Although these algorithms have improved the performance

of traditional non-coherent MIMO systems, they are not optimal for massive

time-varying non-coherent channels.

Massive MIMO paradigm relies on TDD multiplexing operation protocol in
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order to jump over the formidable task of estimating the channel during the

DL mode. In TDD the channel reciprocity is exploited where both the UL and

DL share the same frequency spectrum with different time slots. Hence, the

DL channel is just some version of the estimated channel at the BS. Acquiring

channel reciprocity is one of the central important features of TDD protocol.

During UL transmitting mode, BSs with a large number of antennas will esti-

mate the channel instead of single antenna users. As a result, the active users

detect the desired signal by using the effective channel gain through utilizing

some precoding techniques during the DL mode. Now if the UL channel is

estimated inaccurately, a serious down performance will be imposed on the

DL signal detection. Accordingly, acquiring the CSI at the BS posts a funda-

mental limit for communication systems not only during the UL mode, but

rather during DL mode as well.

As opposed to TDD, FDD uses different frequencies for UL and DL. FDD

needs generally at least twice the spectrum required by TDD5. In addition,

FDD uses wasteful guard bands which allow for adequate spectrum sepa-

ration between the transmit and receive channels. Although FDD is widely

used in global systems of mobile (GSM) communication, cellular telephony

systems, it is difficulty to apply in special antenna techniques like MIMO and

beamforming. With a lager number of antennas at the BS, it is more difficult

to design antennas with enough broad bandwidth to cover the UL and DL

5TDD require 2K < T while FDD requires N +K < T .
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spectrum. Consequently, FDD is an intangible operating mode for massive

MIMO systems; however, it can be possible in certain circumstances [15].

Noncoherent signal detection is worth investigating substitutional method

rather estimating the channel and then detecting the signal.

2. Signal Detection Complexity Cost: The essential limitation of any wireless

communication system is the ability to correctly decode the transmitted sig-

nal. This was pointed out earlier by Shannon: ”The fundamental problem

of communication is that of reproducing at one point either exactly or ap-

proximately a message selected at another point” [23]. In addition, ubiquity

of the service coverage requires the ability to process and successfully de-

tect the weak signals which appear in scattering environments or in fast fad-

ing trends. However, when it comes to signal detection, there is always a

tradeoff between the performance and the complexity cost of the detection

algorithms. For MIMO wireless systems, the transmitted signal is prone to

fading, noise, interference and other attenuation sources which contaminate

the received symbols. These obstacles make finding exact decoding algo-

rithm with a scalable-complexity difficult to achieve [24], [25]. In fact, it has

been shown that MIMO signal detection problem is an NP-hard optimiza-

tion problem [26], and the complexity of the detection is exponential in the

number of decision variable.

A computationally efficient way of solving the ILS problem was introduced

by using tree base search algorithms like sphere decoder (SD) [27]–[32]. For
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example, [29], [30] used the SD algorithm to achieve ML non-coherent sig-

nal detection for SIMO systems and constant modulus constellation6. The

sphere decoder reduces the computational complexity by restricting the de-

tection search to a subset of the signal space. The SD searches over the lattice

points which are inside a sphere radius r. In fact, it demonstrates, roughly, a

cubic complexity over a wide range of signal to noise ratio (SNR) and mod-

erate system dimension [31]. SD has two drawbacks: First, it introduced to

achieve optimal detection only for constant modulus constellation. Second,

for high dimension systems with low SNR, the complexity of the sphere de-

coder grows exponentially with the coherent time [33]. Attempts to prune the

complexity of the sphere decoder were introduced using some search space

realization in [34], [35] based on the combination of branch and bound tree

search. However, these relaxation techniques increase the complexity per

each node to be cubic.

Channel state partition approaches can achieve GLRT-optimal non-coherent

detection with worst-case computational complexity polynomial in the co-

herent block length T [36]–[39]. In general, this line of work of polynomial

complexity sequence detection applies to single-input single-output (SISO)

systems, where the channel state can be represented by only a scaler vari-

able. When extended to MIMO systems with many receive antennas, the

6By constant modulus constellation, like QPSK or BPSK, we mean that {∀si ≠ sj ∈

Ω , ∣si∣
2
= ∣sj ∣

2
}, while for nonconstant, like 16-QAM, ∣si∣2 may or may not equal ∣sj ∣2.
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state partition approach is either inapplicable or will result in an extremely

high computational complexity.

The auxiliary angle approach is used to solve low-rank convex quadratic

maximization problem in order to achieve exact ML noncoherent detection

with polynomial-complexity [40]–[42]. However, the polynomial complexity

only holds for equal-energy signal constellation, PSK, and it does not apply

to nonconstant-amplitude modulations, PAM, and QAM. Unlike the previ-

ous work which used auxiliary-angle approach for constant modulus con-

stellation, [43] develops ML noncoherent sequence detection algorithm for

PAM which extended to QAM modulations. Although this algorithm attains

polynomial expected complexity in the entire coherence interval, it was in-

troduced mainly to PAM modulation and for SISO systems.

It was shown joint detection offers better performance that symbol-by-symbol

detection [44]. Joint Detection requires decoding each symbol considering

the characteristics of the rest of the symbols in the coherent block. For mas-

sive MIMO systems there will be unprecedented flow of wireless data traffic

and hence fast, efficient detection algorithms are required. Due to the lack

of exact joint detection algorithms, it is believed that using suboptimal de-

tection algorithms is preferable to use for massive MIMO systems [15]. As a

consequence, optimal performance algorithms which involve large scale data

detection is a big concern and challenge.

In summary, most of the existing non-coherent detection algorithms achieve
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suboptimal performance with acceptable complexity cost. The existing GLRT-

optimal non-coherent detection algorithms are limited to constant-modulus

modulations or for SISO systems. The question of whether we can achieve

GLRT-optimal non-coherent detection for massive SIMO and MIMO systems

with general constellations while having a computational complexity poly-

nomial in T has been open.

3. Pilot contamination: Due to the limitation in constricting orthogonal pilot

sequences, different cells could share the same frequency-time resources, and

different users in the network share the same orthogonal pilots. Assigning

the same pilot for different users results the phenomena of pilot contam-

ination which badly influences the channel estimation and system perfor-

mance [45], [46].

Pilot contamination is particularly harmful to the performance and through-

put of MU-MIMO systems since the number of required pilots scales with the

number of cells, N × L. In mobile environments the coherence time will be

short, and it is impractical to use long training sequences. Consequently, us-

ing non-orthogonal uplink training sequences to estimate the channel causes

a polluted estimated channel by other cells users’ training signals. It has

been shown by [11], [13] that pilot contamination in MU-MIMO is the only

remaining impairment that cannot be eliminated as N →∞.

We can illustrate the idea of pilot contamination using Figure 1.3 for 2 cells
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Cell 2
Cell 1

Figure 1.3: The estimated channel at BS2 ĥ22 = c1h22 + c2h12 + c3w.

system. Each cell is deployed with one BS and one user. Let us denote the

channel between the i-th cell BS and the users in the j-th cell as hi,j . Let

assume that we assign the same pilot for both users. Then, the estimated

channel at cell 2 is a linear combination of the channels between BS2 and the

users in both cell 2 and 1, ĥ22 = c1h22 + c2h12 + c3w where c1, c2 and c3 are

constant depend on the propagation factor.

For a cellular system with L cells, Let pjk be the training vector transmitted

by the k-th active user in the j-th cell. The received column vector by the

m-th antenna of the l-th cell will be,

ylm =
L

∑
j=1

K

∑
k=1

chjlkmpjk +wlm,

where c is a constant including the transmitted power and the propagation

factor, and wlm is the additive noise. If we assume there is one UT at each BS,
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the MMSE estimated channel at the l − th cell is given by ĥlj = clp†Yj . Thus,

In case of using the same training sequences, the estimated channel at the BS

l will be some version of other cells estimated channel.

Based on [16], a simple version of the signal to interference and noise ratio

(SINR) can be given as

1
KL̂
cN
°

Interference

+ 1
ρN

N̄oise

+ α(L̂ − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Pilot contamination

,

where α ∈ (0,1), and L̂ = 1 + α(L − 1). We can realize as N → ∞, the first two

terms in the denominator will vanish and the only performance limitation

term that will stay is the pilot contamination.

1.5 Main Contributions

Our main contributions are summarized as follows:

Optimized Markov Chain Monte Carlo for Signal Detection in MIMO Systems:

an Analysis of the Stationary Distribution and Mixing Time

Our main contributions in Chapter 2 are twofold: characterizing the sta-

tionary distribution, and bounding the mixing time of MCMC detectors. These

results lead to an optimized MCMC detector for solving ILS problems. Firstly,

we compute the optimal value of the “temperature” parameter, in the sense that

the temperature has the desirable property that once the Markov chain has mixed

to its stationary distribution, there is polynomially (and not exponentially) small
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probability of encountering the optimal solution. This temperature is shown to be

O(
√

SNR/ ln(N)), where SNR > 2 ln(N), and N is the problem dimension. Sec-

ondly, we study the mixing time of the underlying Markov chain of the proposed

MCMC detector. We find that, the mixing time of MCMC is closely related to

whether there is a local minimum in the lattice structure of the ILS problems. Con-

ventional wisdom proposes to use a temperature that is set to the noise standard

deviation. On one hand, for some lattices without local minima, the mixing time of

the Markov chain is independent of SNR, and grows polynomially in the problem

dimension. On the other hand, for such a temperature choice, the mixing time of

the Markov chain grows unbounded with SNR if the lattice has local minima.

We also study the probability of exist local minima in an ILS problem. For

example, the probability of having local minima is 1
3 −

1√
5
+ 2 arctan(

√
5
3
)

√
5π

for 2 × 2

Gaussian MIMO matrices. Simulation results indicate, when the system dimen-

sion N → ∞, there seems to be at least one local minimum, but we do not have a

rigorous proof of this phenomenon. Our theoretical and empirical results suggest

that, to ensure fast mixing, for a fixed dimension N , very often the temperature for

MCMC should be scaling at least as Ω(
√

SNR). This is contrary to conventional

wisdoms of using the standard deviation of channel noises [47], [48] as the temper-

ature. Our simulation results show that the optimized MCMC detector achieves

approximately ML detection in MIMO systems having a huge number of transmit

and receive dimensions. We, however, have not been able to prove the scaling of

the mixing time in terms of system dimension N for ILS problems.
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Optimal Non-coherent Data Detection for Massive SIMO Wireless Systems with

General Constellation: A Polynomial Complexity Solution

We can summarize our contribution in this chapter as follows:

• We propose GLRT-optimal joint channel estimation and data detection algo-

rithms for SIMO systems with provably polynomial complexity. Our algo-

rithms apply to general constellations, including nonconstant-modulus con-

stellations. Our algorithms include a new breath-first tree-search algorithm

which can find the GLRT-optimal non-coherent solution without requiring

any predetermined search radius. To the best of our knowledge, these al-

gorithms are the first set of efficient GLRT-optimal joint non-coherent data

detection algorithms for massive SIMO systems using general constellations.

We are thus able to provide the first set of error rate curve of the GLRT-

optimal non-coherent detections for massive SIMO wireless systems with

general constellations.

• Theoretically, we show that, under a large number of receive antennas in

massive SIMO systems, both the sphere decoder algorithm and our own al-

gorithms have expected computational complexity polynomial in the chan-

nel coherence time T and in the number of receive antennas. This is surpris-

ing, since we need to estimate a large number of unknown channel coeffi-

cients in massive SIMO systems. Moreover, we show that this is true as long

as the number of recieve antennas grows polynomially in T .
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• As a consequence of this work, we demonstrate the exact performance gap

between the GLRT-optimal and suboptimal non-coherent data detection al-

gorithms for massive SIMO systems. In fact, we demonstrate significant per-

formance gains of our optimal non-coherent detection algorithms for nonconstant-

modulus .

Efficient Optimal Joint Channel Estimation and Data Detection for Massive MIMO

Systems

In this work, we demonstrate the exact performance gap between optimal

and suboptimal non-coherent data detections in massive MIMO systems. We pro-

pose an efficient optimal joint channel estimation and data detection algorithm

for massive MIMO systems with low expected complexity. Our algorithm is op-

timal in terms of the generalized likelihood ratio test (GLRT). We show that the

expected complexity of our tree search based algorithm grows polynomially in

the channel coherence time. In its essence, our approach is a branch-and-bound

method on the residual energy of massive MIMO signals after projecting them

onto certain subspaces. Moreover, our algorithm can provide benchmark perfor-

mance against suboptimal low-complexity joint channel estimation and data de-

tection algorithms. Simulation results demonstrate significant performance gains

of our algorithm compared with suboptimal non-coherent detection schemes. To

the best of our knowledge, this framework is the first GLRT-optimal non-coherent

signal detection algorithm for massive MIMO systems with low computational

complexity and optimal performance.
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1.6 Organization

The rest of this thesis is organized as follows. Chapter 2 discusses the

MCMC signal detection method for MIMO systems, and presents all the related

analysis. Chapter 3 provides the joint channel estimation and data detection SIMO

algorithms for massive SIMO systems, and shows the performance and the com-

plexity with general constellation. Chapter 4 introduces our novel non-coherent

signal detection massive MIMO algorithms for general constellation. Scope of fu-

ture research is highlighted in 5.
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CHAPTER 2
OPTIMIZED MARKOV CHAIN MONTE CARLO FOR SIGNAL DETECTION

IN MIMO SYSTEMS: AN ANALYSIS OF THE STATIONARY
DISTRIBUTION AND MIXING TIME

2.1 Introduction

In chapter 2 as a way to overcome the high complexity of SD’s for ILS prob-

lems, we use approximate Markov Chain Monte Carlo (MCMC) detectors instead.

MCMC method can provide the optimal solution asymptotically [49], [50] by per-

forming the random walk according to the transition probability determined by

the stationary distribution of a reversible Markov chain [50], [51]. MCMC detectors

are proposed in [47], [48] for data detection in wireless communication; however,

we optimize the performance of MCMC detector.

We introduce an optimized Markove Chain Monte Carlo (MCMC) tech-

nique for solving integer least-square (ILS) problems, which include Maximum

Likelihood (ML) detection in lage scale multiple-input Multiple-output (MIMO)

systems. ILS problem appears in many research areas, for example, communi-

cations, radar imaging, Monte Carlo second-moment estimation, bioinformatics,

and lattice design [26], [52]. Sphere decoder (SD) is an efficient way for an ex-

act solution of (ILS) problem. It is known that for a moderate problem size and

a suitable range of Signal-to-Noise Ratios (SNR), SD has low computational com-

plexity, which can be significantly smaller than an exhaustive search. However,

for large scale MIMO system dimension, the average computational complexity of
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traditional SD is exponential with system dimension [33].

Unlike the SD which perform well in high SNR regimes, MCMC detectors

often suffer performance degradation in high SNR regimes. Moreover, the MCMC

detectors in the literature were proposed mostly as practical heuristic detectors

for digital communications. The theoretical understanding of MCMC detectors

performance and complexity remains limited. For example, the mixing time (con-

vergence rate) of the underlying Markov chains of these MCMC detectors, namely

how fast these Markov chains mix to their stationary distributions, is not explicitly

known. For the MCMC detectors in the literature [47], [48], the conditional transi-

tion probabilities of their underlying Markov chains were directly determined by

the posterior likelihood of signal sequences [47], [48]. In other words, the standard

deviation of channel noise was naturally applied as the “temperature” of these

MCMC detectors [47], [48]. It was not clear either whether this choice of tempera-

ture is optimal, and what effect it will have on the performance and complexity of

MCMC detectors.

To optimize MCMC detectors for ILS problems, we focus on two factors

which contribute to the speed of finding the optimal solution by the MCMC detec-

tor: the probability of encountering the optimal solution when the Markov chain

has converged to the stationary distribution, and the mixing time of the underly-

ing Markov chain for the MCMC detector. In fact, if the optimal solution has a

high probability in the stationary distribution, the MCMC detector will very likely

encounter the optimal solution when its underlying Markov chain has mixed to
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its stationary distribution. However, as we will see in this chapter, increasing the

probability in the stationary distribution of the optimal solution often (even though

not always) results in a slow mixing of the underlying Markov chain. Namely it

takes a long time for the Markov chain to reach its stationary distribution. How

to balance the mixing time and the stationary distribution for best performance of

MCMC detectors is the main subject of this chapter.

The chapter is organized as follows. In Section 2.2 we present the system

model that will be used throughout the chapter. The MCMC methods and back-

ground knowledge on Markov chain mixing time are described in Section 2.3. In

Section 2.4 we analyze the probability of error for the ML detector. Section 2.5

treats the optimal selection of the temperature parameter α. Sections 2.6 and 2.7

derive bounds on the mixing time and discuss how to optimize MCMC parameters

to ensure fast mixing. Simulation results are given in Section 2.8.

2.2 System Model

We consider a real-valued block-fading MIMO antenna system, withN trans-

mit andN receive dimensions, with know channel coefficients. The received signal

y ∈ RN can be expressed as

y =
√

SNR
N

Hx + υ , (2.1)

where x ∈ ΞN is the transmitted signal, and Ξ denotes the constellation set. To

simplify the derivations we will assume that Ξ = {±1}. υ ∈ RN is the noise vec-
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tor where each entry is Gaussian N (0,1) and independent identically distributed

(i.i.d.), and H ∈ RN×N denotes the channel matrix with i.i.d. N (0,1) entries. (In

general, H can be any matrix, however, for analysis purposes we will focus on H

with i.i.d. Gaussian elements.) SNR denotes the signal-to-noise ratio, namely,

SNR = E ∥y − υ∥2

E∥υ∥2
. (2.2)

For analysis purposes we will focus on the regime where SNR > 2 ln(N), in order

to get the probability of error of the ML detector to go to zero. Without loss of

generality, we will assume that the all-minus-one vector was transmitted, x = −1.

Therefore

y = υ −
√

SNR
N

H1 . (2.3)

We are considering a minimization of the average error probability P (e) ≜

P (x̂ ≠ x), which is obtained by performing Maximum Likelihood Sequence Detec-

tion (here simply referred to as ML detection) given by

x̂ = arg min
x∈ΞN

XXXXXXXXXXXX
y −

√
SNR
N

Hx

XXXXXXXXXXXX

2

. (2.4)

We emphasize that we focus on considering real-valued MIMO channels in

this chapter. The results in this chapter can be adapted to complex-valued MIMO

channels, constellations, and complex noises used in wireless systems in two ways.

In one way, one can directly solve the same optimization problem provided in (2.4),
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except for the fact that we allow H and x to take complex numbers. In another

way, one can decompose the model in (2.1) into a real-valued model through the

following decomposition:

⎛
⎜⎜⎜
⎝

R(y)

I(y)

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

R(H) −I(H)

I(H) R(H)

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

R(x)

I(x)

⎞
⎟⎟⎟
⎠
+
⎛
⎜⎜⎜
⎝

R(υ)

I(υ)

⎞
⎟⎟⎟
⎠
,

where R(⋅) and I(⋅) respectively denote the real and imaginary parts of a matrix.

2.3 MCMC Detector

One way of solving the optimization problem given in (2.4) is by using

Markov Chain Monte Carlo (MCMC) detectors, which asymptotically converge

to the optimal solution if the detector follows a reversible Markov chain [53]. We

first describe our proposed MCMC detector based on reversible Markov chain, and

then compare it with existing MCMC detectors in the literature.

2.3.1 Reversible MCMC Detector

In this chapter, we mainly focus on an MCMC detector which follows a

reversible Markov chain and asymptotically converges to the stationary distribu-

tion [53]. Under the stationary distribution, the MCMC detector has a certain pos-

itive probability of visiting the optimal solution. This implies that if the MCMC

detector is run for a sufficiently long time, it will be able to find the optimal solu-

tion to (2.4).

For this MIMO detection problem (2.4), the MCMC detector starts with a
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certain N -dimensional feasible vector x̂(0) among the set {−1,+1}N of cardinality

2N . Then the MCMC detector performs a random walk over {−1,+1}N based on

the following reversible Markov chain. Assume that we are at time index l and the

current state of the Markov chain is x̂(l) ∈ {−1,+1}N . In the next step, the Markov

chain picks one random position index j uniformly out of {1,2, ...,N}, and keeps

the symbols of x̂(l) at other positions fixed. Then the MCMC detector computes the

conditional probability of transferring to each constellation point at the j-th index.

With the symbols at the (N − 1) other positions fixed, the probability that the j-th

symbol adopts the value ω, is given by

p (x̂(l+1)
j = ω ∣θ) = e

− 1
2α2

XXXXXXXXXXX
y−

√
SNR
N

Hx̂j∣ω

XXXXXXXXXXX

2

∑
x̂j∣ω̃ ∈Ξ

e
− 1

2α2

XXXXXXXXXXX
y−

√
SNR
N

Hx̂j∣ω̃

XXXXXXXXXXX

2 , (2.5)

where x̂T
j∣ω ≜ [x̂(l)

1∶j−1, ω, x̂
(l)
j+1∶N]

T
, θ = {x̂(l), j,y,H} and α > 0 is a tunable “tempera-

ture” parameter. So conditioned on the j-th position is chosen, the MCMC detector

will with probability p (x̂(l+1)
j = ω ∣θ) transition to ω at the j-th position index. The

initialization of the symbol vector x̂(0) can either be chosen randomly or as other

heuristic solutions. Note that for a general constellation set Ξ, the procedure above,

which summarized in Algorithm 1, still applies by replacing {−1,+1} with Ξ.

For this type of MCMC detector, we care about the probability that such an

algorithm encounters the true transmitted signal within a certain number of itera-

tions. In general, determining this probability within a certain number of iterations
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Algorithm 1: MCMC detector based on reversible Markov chain.
Input: y, H, initialization vector x̂(0), decision vector x̂ = x̂(0) and the
number of iterations n, set loop index l = 0
Output: The transmitted signal x̂

1. Pick a uniformly random position index j out of {1,2, ...,N}.

2. Keep the symbols of x̂(l) at the (N − 1) other positions fixed, transition the
j-th symbol of x̂(l) to ω with probability p (x̂(l+1)

j = ω ∣θ) specified in (2.5), for
every ω ∈ Ξ

3. Denote the new vector by x̂(l+1)

4. If ∥y −Hx̂(l+1)∥2
2 < ∥y −Hx̂∥2

2, update x̂ ∶= x̂(l+1).

5. If l ≠ n − 1 go to (1), else stop the algorithm and present the output.

is difficult. However, things are relatively easy when we assume that the underly-

ing Markov chain has mixed to the steady state distribution, which is easy to write

down because it is easy to determine the probability Pen of encountering the true

transmitted signal in steady state. Therefore, an upper bound on the expected time

to find the optimal solution is determined by the mixing time (the time it takes to

to reach the steady state) of the Markov chain, and the inverse of the probability

Pen of encountering the true transmitted signal in the steady state.

We remark that α represents a tunable positive parameter which controls

the mixing time of the Markov chain, and this parameter is also sometimes called

the “temperature”. If we let α →∞, the MCMC detector is a just a uniform random

walk in the signal space, namely in each iteration the detector chooses constellation

points with equal probabilities, and the underlying Markov chain quickly mixes to
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its steady state [51]. When α is close to 0, the MCMC detector will eventually

“reside” at the optimal solution, but it may take a very long time to get there from

an initial suboptimal signal vector.

Now the smaller α is, the larger the stationary probability for the optimal

solution will be, and the easier it is for the MCMC detector to find the optimal

solution in the stationary distribution. On the other hand, as α gets smaller, it often

takes a long time for the Markov chain to converge to its stationary distribution.

In fact, as we will show in this chapter, there is often a lower bound on α, in order

to ensure the fast mixing of the Markov chain to its stationary distribution.

2.3.2 Comparisons with Conventional MCMC Detectors

Our proposed MCMC detector is different from conventional MCMC de-

tectors [47], [48]. In [47], [48], the conditional transition probabilities of the un-

derlying Markov chains were directly determined by the posterior likelihood of

data sequences. In other words, the “temperature” α of these MCMC detectors is

directly set as the standard deviation of channel noise [47], [48]. In this chapter,

however, we have the freedom of optimizing this temperature parameter α.

Our proposed method is also very different from simulated annealing tech-

niques where the temperature is slowly reduced until the detector converges to an

acceptable solution. In our MCMC detector, the temperature is set as a fixed value,

and we care about a fast mixing of the underlying Markov chain to a stationary

probability distribution and a big enough probability of encountering the trans-
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mitted signal in steady state. Unlike simulated annealing, we do not require the

MCMC random walk to converge to the optimal solution in the end, but instead

we would like the MCMC random walk to encounter the optimal solution as soon

as possible. This is because in the MCMC detector, we always record the sequence

which has the lowest distance metric.

2.3.3 Mixing Time

It is not hard to see that the Markov chain of MCMC detector is reversible

and has 2N states with the stationary distribution e
− 1

2α2

XXXXXXXXXXX
y−

√
SNR
N

Hx̂
XXXXXXXXXXX

2

(without nor-

malization) for a state x̂. The 2N × 2N transition matrix is denoted by P , and the

element Pi,j in the i-th ( 1 ≤ i ≤ N ) row and j-th ( 1 ≤ j ≤ N ) column is the condi-

tional probability of transferring to state j given that the current state is i. So each

row of P sums up to 1 and the transition matrix after t iterations is P t. We denote

the vector for the stationary distribution as π. Then for an ε > 0, the mixing time

t(ε) is a parameter describing how long it takes for the Markov chain to get close

to the stationary distribution [51], namely,

tmix(ε) ∶= min{t ∶ max
x̃

∥P t(x̃, ⋅) − π∥TV ≤ ε},

where ∥µ − ν∥TV is the usual total variation distance between two distributions µ

and ν over the state space {+1,−1}N .

∥µ − ν∥TV = 1

2
∑

z∈{+1,−1}N
∣µ(z) − ν(z)∣.
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The mixing time is closely related to the spectrum of the transition matrix

P . More precisely, for a reversible Markov chain, its mixing time is generally small

when the gap between the largest and the second largest eigenvalue of P , namely

1 − λ2, is large. The inverse of this gap, 1
1−λ2

, is called the relaxation time.

2.3.4 Sequential Markov Chain Monte Carlo Detectors

For simplicity of implementations, we also consider a sequential MCMC

detector. The only difference between sequential MCMC detectors and reversible

MCMC detectors is the way they choose the position index to update. Sequential

MCMC detectors can have many block iterations which can be define for the se-

quential MCMC detector as an sequential update of all the N indices {1, . . . ,N} in

the estimated symbol vector x̂, starting from j = 1 to j = N . Namely, in one block

iteration, we update N indices. For each index j, the updating rule for the sequen-

tial MCMC detector is the same as the reversible MCMC detector. We remark,

however, that the mixing time results are only for reversible MCMC detectors.

2.3.5 Complexity of the MCMC Detector

The conditional probability for the j-th symbol in (2.5) can be computed

efficiently by reusing the result obtained in earlier iterations, when we evaluate

∥y −
√

SNR/NHx̂j∣ω ∥
2
. Since we are only changing the j-th symbol in the symbol

vector, the difference d(l) ≜ y −
√

SNR/NHx̂j∣ω can be expressed as

d(l) = d(l−1) −
√

SNR
N

hj∆xj∣ω , (2.6)
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where l is the index for the number of iterations, ∆xj∣ω ≜ x(l)
j∣ω − x

(l−1)
j∣ω̃ , and hj is the

j-th column of H. The computation of the conditional probability when changing

the symbol in the j-th position costs 2N operations1, where we define an operation

as a Multiply and Accumulate (MAC) instruction. This leads to a complexity of

O (2N[∣Ξ∣ − 1)]) operations per iteration, which grows linearly with ∣Ξ∣.

2.3.6 MCMC Sampling Using QR- or QL-factorization

When the number of iterations in the MCMC detector is sufficiently larger

than the system size, the complexity of MCMC detector can be reduced further

using a QR- or QL-factorization, H = Q̃R = QL, thus (2.4) becomes

min
x∈ΞN

XXXXXXXXXXXX
ỹ −

√
SNR
N

Lx

XXXXXXXXXXXX

2

, (2.7)

where ŷ ≜ QTy. Since L is a lower triangular matrix, the product Lx requires less

operations compared to a full channel matrix. Suppose we need to update po-

sition index j at the current iteration and assume d(l−1) is known, we only need

to compute the indices from j to N in d(l), since these are the only non-zero ele-

ments in L1∶N,j∆xj∣Ξ . Thus, for a square channel matrix of size N the complexity

of one iteration in the MCMC detector can roughly be reduced to half, namely

O (N[∣Ξ∣ − 1]). This saving should be compared with the complexity of perform-

ing the QL-factorization, which requires O(2
3N

3 + 2N2). Thus, we can achieve a

complexity reduction when the number of iterations is k > (3
2N

2 +N)/(∣Ξ∣ − 1).

1We need to compute both the product hj∆xj∣ω and the inner product (d(l)
)
Td(l) .
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2.4 Probability of Error

First, we derive the probability of error for ML detection in MIMO systems,

then use the results to characterize the SNR regime of interest. The error probabil-

ity is calculated by averaging over the random matrices H and random noises. We

will state lemma 2.4.1 (the proof of which is provided in the appendix).

Lemma 2.4.1 (Gaussian Integral). Let v and x be i.i.d N(0, IN) each. Let a and η ≤ 0

be constant numbers. We further assume that 1 − 2a2η(1 + 2η) > 00. Then

E{eη(∥v+ax∥2−∥v∥2)} = ( 1

1 − 2a2η(1 + 2η)
)
N/2

. (2.8)

Let us first look at the probability of error using maximum likelihood detec-

tion. We will make an error if there exists a vector x ≠ −1 such that

XXXXXXXXXXXX
y −

√
SNR
N

Hx

XXXXXXXXXXXX

2

≤
XXXXXXXXXXXX
y +

√
SNR
N

H1

XXXXXXXXXXXX

2

= ∥υ∥2 .

In other words,

Pe = Prob
⎛
⎜
⎝

XXXXXXXXXXXX
y −

√
SNR
N

Hx

XXXXXXXXXXXX

2

≤ ∥υ∥2
⎞
⎟
⎠

= Prob
⎛
⎜
⎝

XXXXXXXXXXXX
υ +

√
SNR
N

H(−1 − x)
XXXXXXXXXXXX

2

≤ ∥υ∥2
⎞
⎟
⎠
,

for some x ≠ −1, which can be formulated as
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Pe = Prob
⎛
⎜
⎝

XXXXXXXXXXXX
υ + 2

√
SNR
N

Hδ

XXXXXXXXXXXX

2

≤ ∥υ∥2
⎞
⎟
⎠
,

for some δ ≠ 0, where δ ≜ 1
2(−1 − x). Note that in the above equation δ is a vector

of zeros and −1’s. Now using the union bound

Pe ≤ ∑
δ≠0

Prob
⎛
⎜
⎝

XXXXXXXXXXXX
υ + 2

√
SNR
N

Hδ

XXXXXXXXXXXX

2

≤ ∥υ∥2
⎞
⎟
⎠
. (2.9)

We will use the Chernoff bound to bound the quantity inside the summation. Thus,

Prob
⎛
⎜
⎝

XXXXXXXXXXXX
υ + 2

√
SNR
N

Hδ

XXXXXXXXXXXX

2

≤ ∥υ∥2
⎞
⎟
⎠

(2.10a)

≤ E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e
−β

⎛
⎜
⎝

XXXXXXXXXXX
υ+2

√
SNR
N

Hδ
XXXXXXXXXXX

2

−∥υ∥2
⎞
⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(2.10b)

=
⎛
⎜
⎝

1

1 + 8SNR∥δ∥2

N β(1 − 2β)

⎞
⎟
⎠

N/2

, (2.10c)

where β ≥ 0 is the Chernoff parameter, and where we have used Lemma 2.8 with

η = −β and a = 2

√
SNR∥δ∥2

N , since

E
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎝

2

√
SNR
N

Hδ
⎞
⎠
⎛
⎝

2

√
SNR
N

Hδ
⎞
⎠

T⎫⎪⎪⎪⎬⎪⎪⎪⎭
= 4

SNR∥δ∥2

N
IN .

The optimal value for β is 1
4 , which yields the tightest bound
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Prob
⎛
⎜
⎝

XXXXXXXXXXXX
υ + 2

√
SNR
N

Hδ

XXXXXXXXXXXX

2

≤ ∥υ∥2
⎞
⎟
⎠
≤
⎛
⎜
⎝

1

1 + SNR∥δ∥2

N

⎞
⎟
⎠

N/2

. (2.11)

Note that this depends only on ∥δ∥2, the number of nonzero entries in δ. Plugging

this into the union bound yields

Pe ≤
N

∑
i=1

⎛
⎜⎜⎜
⎝

N

i

⎞
⎟⎟⎟
⎠

⎛
⎝

1

1 + SNRi
N

⎞
⎠

N/2

. (2.12)

Let us first look at the linear (i.e., i proportional to N ) terms in the above sum,

⎛
⎜⎜⎜
⎝

N

i

⎞
⎟⎟⎟
⎠

⎛
⎝

1

1 + SNRi
N

⎞
⎠

N/2

≈ e
NH( i

N
)−N

2
ln(1+SNRi

N
)
,

where H(⋅) is entropy in “nats”. Clearly, if

lim
N→∞

SNR = ∞,

then the linear terms go to zero (superexponentially fast).

Let us now look at the sublinear terms. In particular, let us look at i = 1:

N
⎛
⎝

1

1 + SNR
N

⎞
⎠

N/2

≈ Ne−SNR/2.

Clearly, to have this term go to zero, we require that SNR > 2 lnN . A similar

argument shows that all other sublinear terms also go to zero, and so we have:
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Lemma 2.4.2 (SNR scaling). If SNR > 2 lnN + f(N), where f(N) is an arbitrary func-

tion that goes to ∞ as N →∞, then Pe → 0 as N →∞.

We remark that the requirement on SNR > 2 lnN + f(N) to guarantee small

sequence error probability is near optimal. In fact, one can show that, for a channel

matrix with orthogonal columns, if SNR < (1 − ε) lnN , where ε > 0 is an arbitrary

constant, the sequence error probability is then lower bounded by a positive con-

stant as N →∞.

2.5 Computing the Optimal α

In this section, we derive the optimal value of the “temperature” parameter

which controls the mixing time of the underlying Markov chain. The temperature

has the desirable property that once the Markov chain has mixed to steady state,

there is only polynomially (and not exponentially) small probability of encounter-

ing the optimal solution.

2.5.1 Mean of π−1

In the following section we compute the expected value of the stationary

probabilities of the states, where the expectation is taken over random Gaussian

H and noises. More specifically, we are examining the probability of state x = −1,

denoted by π−1 (recall that we assumed that −1 is transmitted symbol vector). This

calculation has a lot in common with the one in Section 2.4. Let δ be a vector of

zeros and ones, then:
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π−1 =
e
− 1

2α2

XXXXXXXXXXX
y+

√
SNR
N

H1
XXXXXXXXXXX

2

∑x e
− 1

2α2

XXXXXXXXXXX
y+

√
SNR
N

Hx
XXXXXXXXXXX

2 (2.13a)

= e−
1

2α2 ∥υ∥2

∑x e
− 1

2α2

XXXXXXXXXXX
υ+

√
SNR
N

H(x−1)
XXXXXXXXXXX

2 (2.13b)

= e−
1

2α2 ∥υ∥2

∑δ e
− 1

2α2

XXXXXXXXXXX
υ+2

√
SNR
N

Hδ
XXXXXXXXXXX

2 (2.13c)

= 1

∑δ e
− 1

2α2

⎛
⎜
⎝

XXXXXXXXXXX
υ+2

√
SNR
N

Hδ
XXXXXXXXXXX

2

−∥υ∥2
⎞
⎟
⎠

, (2.13d)

Now, using Jensen’s inequality and the convexity of 1
t when t > 0,

E{π−1} ≥
1

E{ 1
π−1

}

= 1

E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑δ e

− 1
2α2

⎛
⎜
⎝

XXXXXXXXXXX
υ+2

√
SNR
N

Hδ
XXXXXXXXXXX

2

−∥υ∥2
⎞
⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

= 1

∑δ E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e
− 1

2α2

⎛
⎜
⎝

XXXXXXXXXXX
υ+2

√
SNR
N

Hδ
XXXXXXXXXXX

2

−∥υ∥2
⎞
⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

= 1

1 +∑δ≠0

⎛
⎝

1

1+4
SNR∥δ∥2

N
1
α2 (1− 1

α2 )

⎞
⎠

N/2 (2.14a)

= 1

1 +∑Ni=1

⎛
⎜⎜⎜
⎝

N

i

⎞
⎟⎟⎟
⎠
( 1

1+βi
N

)
N/2

. (2.14b)
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In (2.14a) we have used Lemma 2.8 and in (2.14b) we have defined β ≜

4SNR 1
α2 (1 − 1

α2 ). While it is possible to focus on the linear and sublinear terms in

the above summation separately, to give conditions for E{π−1} to have the form of

1/poly(N), we will be interested in the exact exponent of the poly and so we need

a more accurate estimate. To do this we shall use saddle point integration. To this

end, note that
⎛
⎜⎜⎜
⎝

N

i

⎞
⎟⎟⎟
⎠
( 1

1 + βi
N

)
N/2

≤ eNH( i
N

)−N
2

ln(1+βi
N

) ,

where H(⋅) represents the entropy in “nats”, and the inequality is through using

the following inequality from [54]:

eNH( i
N

)

N + 1
≤
⎛
⎜⎜⎜
⎝

N

i

⎞
⎟⎟⎟
⎠
≤ eNH( i

N
).

And so the summation in the denominator of (2.14b) can be approximated

as:

N

∑
i=1

⎛
⎜⎜⎜
⎝

N

i

⎞
⎟⎟⎟
⎠
( 1

1 + βi
N

)
N/2

≤
N

∑
i=1

eNH( i
N

)−N
2

ln(1+βi
N

) (2.15a)

≤ N max
i
eNH( i

N
)−N

2
ln(1+βi

N
) (2.15b)

≤ N max
x∈[0,1]

eNH(x)−N
2

ln(1+βx) (2.15c)

= NeNf(x0) , (2.15d)
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where x0 is the saddle point of f(⋅), i.e.,f ′(x0) = 0. In our case,

f(x) = −x lnx − (1 − x) ln(1 − x) − 1

2
ln(1 + βx) ,

and so

f ′(x) = ln
1 − x
x

− 1

2

β

1 + βx
.

In general, it is not possible to solve for f ′(x0) = 0 in closed form. However, in our

case, we assume that β = 4SNR 1
α2 (1 − 1

α2 ) ≫ 1 (In fact, we must have β → ∞ as

N →∞. Otherwise, (2.15) will be exponential in N ). In this case, it is not too hard

to verify that the saddle point is given by x0 ≈ e−
β
2 . And hence,

f(x0) = −e−
β
2 ln e−

β
2 − (1 − e−

β
2 ) ln(1 − e−

β
2 )

− 1

2
ln(1 + βe−

β
2 )

≈ β
2
e−

β
2 + e−

β
2 − 1

2
βe−

β
2

= e−
β
2 .

Replacing these into the saddle point expression in (2.15) shows that

N

∑
i=1

⎛
⎜⎜⎜
⎝

N

i

⎞
⎟⎟⎟
⎠
( 1

1 + βi
N

)
N/2

≤ N exp (Ne−
β
2 ) . (2.16)

We want E{π−1} to behave as 1
Nζ and according to (2.13) this means that we

want the expression in (2.16) to behave as N ζ , where ζ > 1 is a positive number. Let
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us take

NeNe
−
β
2 = N ζ .

Solving for β yields

β = 2(lnN − ln(ζ − 1)). (2.17)

Finally, this choice of β means that we have

4SNR
1

α2
(1 − 1

α2
) = 2(lnN − ln(ζ − 1)) ,

and so we have the following result.

Lemma 2.5.1 (Mean of π−1). Let ζ > 1 be a positive constant. As N → ∞, if α is chosen

such that

α2

1 − 1
α2

= 2SNR
lnN − ln(ζ − 1)

, (2.18)

then

E{ 1

π−1
} ≤ 1 +N ζ , (2.19)

and

E{π−1} ≥
1

1 +N ζ
. (2.20)

When we have an upper bound on E{ 1
π−1

}, we can then use the Markov in-

equality to give upper bounds on the probability that 1
π−1

exceeds a certain thresh-

old. More precisely, we have P ( 1
π−1

> Nγ′) ≤ E{ 1
π−1

} /Nγ′ ≤ N−(γ′−ζ) for any γ′ (here

we omit the ‘1’ in 1+N ζ whenN is large). This means that with probability close to
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1 as N → ∞, the expected time to encounter the transmitted signal in steady state

is no bigger than Nγ′ , for every γ′ > ζ .

2.5.2 Value of α

In this subsection we investigate how α behaves as a function of the SNR

and the system dimension, if α is chosen according to (2.18). In general, the larger

α is, the faster the Markov chain mixes. However, choosing α any larger than this

means that the probability of finding the optimal solution in stationary distribution

is exponentially small. Thus, when choosing the value of α, there is a trade-off

between faster mixing time of the Markov chain (due to an increase of α), and faster

encountering the optimal solution in stationary distribution. In the following, we

evaluate (2.18) with ζ = i, denoted as αζ=i and we also approximate α in (2.18) by

neglecting the terms ln ln(N) and ln(ζ − 1), leading to

α4

α2 − 1
= 2SNR

ln(N)
. (2.21)

From (2.21) we see that

α2 = SNR
ln(N)

±

¿
ÁÁÀ( SNR

ln(N)
)

2

− 2
SNR

ln(N)
, (2.22)

which implies that α̃ becomes complex when SNR < 2 ln(N). However, as stated in

Section 2.2 we focus on SNR > 2 ln(N). Since we are solving a quadratic equation

we get two values of α2, representing the region in which (2.20) is satisfied. Based
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Figure 2.1: Value of α vs. system size N , for SNR = 10 dB.

on the considerations given above, we prefer the value of α2 obtained by the plus

sign in (2.22), denoted α2
+, in order to achieve the fastest mixing time. In Figure 2.1

the values of αζ=3, αζ=4, and α+ have been plotted as a function of the system di-

mension for SNR = 10 dB. Our simulations suggest that the computed values of α+

give better MIMO detection performance when SNR is large, compared with us-

ing channel noise variance for α2. Our simulations also suggest that the computed

value of α is very close to the optimal choice, even in the case where the condition

SNR > 2 ln(N) is not satisfied.

2.5.3 Mixing Time of Markov Chain

So far, we have examined the largest possible α such that the optimal se-

quence has a reasonable stationary probability. However, all this was based on

assuming that we have reached the stationary distribution. As α also affects the
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speed of getting to the stationary distribution, it is interesting to quantify the mix-

ing time of MCMC detectors. In the next sections, we will discuss how the mixing

time is related to α and the underlying lattice structures in ILS problems.

2.6 Mixing Time

Starting from this section, we consider the mixing time for MCMC for ILS

problems and study how the mixing time for ILS problem depends on the linear

matrix structure and SNR. For simplicity, we use H́ to represent
√

SNR
N H , and

the model we are currently considering is

y = H́x + υ. (2.23)

When the SNR increases, we simply increase the amplitude of elements in H́. We

will also incorporate the SNR term into H́ this way in the following sections unless

stated otherwise.

2.6.1 Orthogonal Matrices

As a first step, we consider a linear matrix H with orthogonal columns. As

shown later, the mixing time for this matrix has an upper bound independent of

SNR. In fact, this is a general phenomenon for ILS problems without local minima.

Theorem 2.6.1. Independent of the temperature α and SNR, the mixing time of the

MCMC detector for orthogonal-column ILS problems is upper bounded by N log(N) +

log(1/ε)N .
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This theorem is an extension of the mixing time for regular random walks

on an N -dimensional hypercube [51]. The only difference here is that the transi-

tion probability follows (2.5) and that the transition probability depends on SNR.

Under orthogonal columns, the ILS problem has no local minimum, since HTH is

a diagonal matrix in the expansion of ∥y − H́x∥2
2.

Proof. When the j-th index was selected for updating in the MCMC detector, since

the columns of H́ are orthogonal to each other, the probability of updating xj to

−1 is 1

1+e
2yT hj

α2

. We note that this probability is independent of the current state of

Markov chain x̂. So we can use the classical coupling idea to get an upper bound

on the mixing time of this Markov chain.

Consider two separate Markov chains starting at two different states x1 and

x2. These two follow the same update rule according to (2.5). By using the same

random source, they select the same position index in each step to update, and they

update that position to the same symbol. Let τcouple be the first time the two chains

come to the same state. Then by a classical result, the total variation distance

d(t) = max
x̃

∥P t(x̃, ⋅) − π∥TV ≤ max
x1,x2

px1,x2{τcouple > t}. (2.24)

Note that the coupling time is just time for collecting all of the positions where

x1 and x2 differ, as in the coupon collector problem. From the famous coupon

collector problem [51], for any x1 and x2,
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d(N log(N) + cN) ≤ px1,x2{τcouple > N log(N) + cN} ≤ e−c. (2.25)

So the conclusion follows.

2.6.2 Mixing Time with Local Minima

In this subsection, we consider the mixing time for ILS problems which

have local minima besides the global minimum point. Our main results are that

local minima greatly affect the mixing time of MCMC detectors, and rigorous state-

ments are given in Theorem 2.6.4. First, we give the definition of a local minimum.

A local minimum x̃ is a state such that x̃ is not a global minimizer for

mins∈{−1,+1}N ∥y − H́s∥2; and any of its neighbors which differ from x̃ in only one

position index, denoted by x̃′, satisfies ∥y − H́x̃′∥2 > ∥y − H́x̃∥2.

We will use the following theorem about the spectral gap of Markov chain

to evaluate the mixing time.

Theorem 2.6.2 (Jerrum and Sinclair (1989) [55], Lawler and Sokal (1988) [56], [51]).

Let λ2 be the second largest eigenvalue of a reversible transition matrix P , and let γ = 1−λ2.

Then

Φ2
∗

2
≤ γ ≤ 2Φ∗,

where Φ∗ is the bottleneck ratio (also called conductance, Cheeger constant, and isoperi-

metric constant) defined as

Φ∗ = min
π(S)≤ 1

2

Q(S,Sc)
π(S)

.
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Here S is any subset of the state spaces with stationary measure no bigger than 1
2 , Sc is its

complement set, and Q(S,Sc) is the probability of moving from S to Sc in one step when

starting with the stationary distribution.

Theorem 2.6.3. If there is a local minimum x̃ in an integer least-squares problem and we

denote its neighbor differing only at the j-th (1 ≤ j ≤ N ) location as x̃j , then the mixing

time of the MCMC detector is at least

tmix(ε) ≥ log( 1

2ε
)(1

γ
− 1), (2.26)

where

γ =
N

∑
j=1

2

N

e−
∥y−H́x̃j∥

2

2α2

e−
∥y−H́x̃j∥

2

2α2 + e−
∥y−H́x̃∥2

2α2

(2.27)

The parameter γ is upper bounded by

2

1 + e
minj ∥y−H́x̃j∥

2−∥y−H́x̃∥2

2α2

(2.28)

Proof. We apply Theorem 2.6.2 to prove this result. We take a local minimum point

x̃ as the single element in the bottle-neck set S. Since x̃ is a local minimum, π(S) ≤

1
2 .

Q(S,Sc) = π(S)
N

N

∑
j=1

e−
∥y−H́x̃j∥

2

2α2

e−
∥y−H́x̃j∥

2

2α2 + e−
∥y−H́x̃∥2

2α2

(2.29)

Dividing by π(S), by the definition of Φ∗
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Φ∗ ≤
Q(S,Sc)
π(S)

= 1

N

N

∑
j=1

e−
∥y−H́x̃j∥

2

2α2

e−
∥y−H́x̃j∥

2

2α2 + e−
∥y−H́x̃∥2

2α2

(2.30)

So we know γ ≤ 2 1
N ∑

N
j=1

e
−

∥y−H́x̃j∥
2

2α2

e
−

∥y−H́x̃j∥
2

2α2 +e−
∥y−H́x̃∥2

2α2

. From a well-known theorem for

the relationship between tmix(ε) and γ: tmix(ε) ≥ ( 1
γ −1) log( 1

2ε) [51], our conclusion

follows.

Theorem 2.6.4. For an ILS problem mins∈{−1,+1}N ∥y−H́s∥2, where H́ is fixed and no two

vectors give the same objective distance, the relaxation time (the inverse of the spectral gap)

of the Markov chain for the reversible MCMC detector (Algorithm 1) is upper bounded by

a constant as the temperature α → 0 if and only if there is no local minimum. Moreover,

when there is a local minimum, as α → 0, then tmix(ε) = eΩ( 1
2α2 ).

Remarks: For the signal model y =
√

SNR
N Hx + υ, if α is set equal to the

noise variance as in [47], [48], it is equivalent to setting “α → 0” when SNR → ∞.

We will keep H́ fixed in Theorem 2.6.4 since the SNR is incorporated into H́.

Proof. First, when there is a local minimum, from Theorem 2.6.3 and Theorem 2.6.2,

the spectral gap γ is lower bounded by

γ = 2

N

N

∑
j=1

e−
∥y−H́x̃j∥

2

2α2

e−
∥y−H́x̃j∥

2

2α2 + e−
∥y−H́x̃∥2

2α2

(2.31)

As the temperature α → 0, the spectral gap upper bound

2

1 + e
minj ∥y−H́x̃j∥

2−∥y−H́x̃∥2

2α2

(2.32)
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decreases at the speed of Θ(e−
minj ∥y−H́x̃j∥

2
−∥y−H́x̃∥2

2α2 ). So the relaxation time of the

MCMC is lower bounded by tmix(ε) = eΩ( 1
2α2 ), which grows unbounded as α → 0.

Suppose instead that there is no local minimum. We argue that as α → 0, the

spectral gap of this MCMC is lower bounded by some constant independent of α.

Again, we look at the bottle neck ratio and use Theorem 2.6.2 to bound.

Consider any set S of sequences which do not include the global minimum

point x∗. As α → 0, the measure of this set of sequences π(S) ≤ 1
2 . Moreover, as

α → 0, any set S with π(S) ≤ 1
2 can not contain the global minimum point x∗. Now

we look at the sequence x̃′ which has the smallest distance ∥y − H́x̃′∥ among the

set S. Since there is no local minimum, x̃′ must have at least one neighbor x̃′′ in

Sc which has smaller distance than x̃′. Otherwise, this would imply x̃′ is a local

minimum. So

Q(S,Sc) ≥ π(x̃′) × 1

N

e−
∥y−H́x̃′′∥2

2α2

e−
∥y−H́x̃′′∥2

2α2 + e−
∥y−H́x̃′∥2

2α2

(2.33)

As α → 0, π(x̃
′)

π(S) → 1. So for a given ε > 0, as α → 0

Q(S,Sc)
π(S)

≥ 1 − ε
N

e−
∥y−H́x̃′′∥2

2α2

e−
∥y−H́x̃′′∥2

2α2 + e−
∥y−H́x̃′∥2

2α2

, (2.34)

which approaches (1−ε)
N as α → 0 because ∥y − H́x̃′′∥2 < ∥y − H́x̃′∥2. From Theorem

2.6.2, γ is at least
(Q(S,S

c
)

π(S)
)2

2 , which is lower bounded by a constant as α → 0.

So from the analysis above, the mixing time is closely related to whether

there are local minima in the problem. In the next section, we will see there often
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exist local minima, which implies very slow convergence rate for MCMC when the

temperature is kept at the noise level in the high SNR regime.

2.7 Presence of Local Minima

We have seen that the mixing time of MCMC detectors are closely related

to the existence of local minima. It is natural to ask how often local minima occur

in ILS problems. In this section, we derive some results about how many local

minima there are in an ILS problem, especially when the SNR is high.

Theorem 2.7.1. There can be exponentially many local minima in an integer least-quare

problem

Proof. See Appendix 2.9.2 for a detailed proof.

Now we study how often we encounter a local minimum in specific ILS

problem models. Without loss of generality, we assume that the transmitted se-

quence is an all −1 sequence. We first give the condition for x̃ to be a local min-

imum. We assume that x̃ is a vector which has k ‘+1’ over an index set K with

∣K ∣ = k and (N − k) ‘−1’ over the set K = {1,2, ...,N} ∖K.

Lemma 2.7.2. Consider

y = H́x + υ, (2.35)

where the columns of N × N matrix H́ are denoted by hi, 1 ≤ i ≤ N . Then x̃ is a local

minimum if and only if x̃ is not a global minimum; and
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• ∀i ∈K,

hTi (∑
j∈K

hj −
υ

2
) < ∥hi∥2

2
(2.36)

• ∀i ∈K,

hTi (∑
j∈K

hj −
υ

2
) > −∥hi∥2

2
. (2.37)

Proof. For a position i ∈K, when we flip x̃i to 1, ∥y − H́x̃′∥2 is increased, namely,

∥y − H́x̃∥2 − ∥y − H́x̃∼i∥2

= ∥ − 2∑
j∈K

hj + υ∥2 − ∥ − 2 ∑
j∈K,j≠i

hj + υ∥2

= 4∥hi∥2 + 4hTi (2 ∑
j∈K,j≠i

hj − υ)

< 0, (2.38)

where x̃∼i is a neighbor of x̃ by changing index i. This means

hTi (∑
j∈K

hj −
υ

2
) < ∥hi∥2

2
. (2.39)

For a position i ∈ K, when we flip x̃i to −1, ∥y − hx̃′∥2 is also increased,
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namely,

∥y − H́x̃∥2 − ∥y − H́x̃∼i∥2

= ∥ − 2∑
j∈K

hj + υ∥2 − ∥ − 2∑
j∈K

hj − 2hi + υ∥2

= −4∥hi∥2 + 4hTi (−2∑
j∈K

hj + υ)

< 0. (2.40)

This means

(hi)T (∑
j∈K

hj −
υ

2
) > −∥hi∥2

2
. (2.41)

It is not hard to see that when SNR→∞, υ is comparatively small with high

probability, so we have the following lemma.

Lemma 2.7.3. When SNR →∞, x̃ is a local minimum with high probability, if and only

if x̃ ≠ −1; and

• ∀i ∈K,

hTi (∑
j∈K

hj) <
∥hi∥2

2
(2.42)
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• ∀i ∈K,

hTi (∑
j∈K

hj) > −
∥hi∥2

2
. (2.43)

We now set out to investigate the chance of having a local minimum in

MIMO systems.

Theorem 2.7.4. Consider a 2 × 2 matrix H́ whose two columns are uniform randomly

sampled from the unit-normed 2-dimensional vector. When υ = 0, the probability of there

existing a local minimum for such an H́ is 1
3 .

Please see the appendix for its proof.

Theorem 2.7.5. Consider a 2×2 matrix H́ whose elements are independentN(0,1) Gaus-

sian random variables. When υ = 0, the probability of there existing a local minimum for

such an H́ is 1
3 −

1√
5
+ 2 arctan(

√
5
3
)

√
5π

.

Please refer to the appendix for its proof.

For higher dimension N , it is hard to directly estimate the probability of a

vector being a local minimum based on the conditions in Lemma 2.7.2. Simulation

results instead suggest that for large N , with high probability, there exists at least

one local minimum. We conjecture this is the case, but proof or disproof of it seems

nontrivial.
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2.8 Simulation Results

In this section we present simulation results for an N × N MIMO system

with a full square channel matrix containing i.i.d. Gaussian entries. In Figure 2.2

and Figure 2.3 the Bit Error Rate (BER) of the sequential MCMC detector has been

evaluated as a function of the number of block iterations in a 10 × 10 system using

a variety of α values. Thereby, we can inspect how the parameter α affects the

convergence rate of the MCMC detector.

The performance of the Maximum Likelihood (ML), the Zero-Forcing (ZF),

and the Linear Minimum Mean Square Error (LMMSE) detector have also been

plotted, to ease the comparison of the MCMC detector with these detectors (Please

see [26], for example, for descriptions of these well-known detectors. In order to
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Figure 2.2: BER vs. iterations, 10 × 10. SNR = 10 dB.
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Figure 2.3: BER vs. iterations, 10 × 10 system. SNR = 14 dB.

benchmark the MCMC detector against a state of the art detector, the performance

of the row-by-row semidefinete relaxation (SDR) detector presented in [57] has

also been included.). It is seen that the MCMC detector outperforms both the ZF

and the LMMSE detectors after only a few block iterations in all the presented sim-

ulations, when the tuning parameter α is chosen properly. It can also be seen that

the MCMC detector can provide a performance improvement over the SDR after

approximately 100 block iterations. Furthermore, it is observed that the parame-

ter α has a huge influence on the convergence rate and that the MCMC detector

converges toward the ML solution as a function of the iterations2.

2It should be noted that the way we decode the symbol vector to a given iteration, is
to select the symbol vector with has the lowest cost function in all the iterations up to that
point in time.
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Figure 2.4: BER vs. SNR, 10 × 10. Number of iterations, k = 100.

Figure 2.4 shows the BER performance for the MCMC detector for fixed

number of iterations, k = 100. From the figure we see that the SNR has a signifi-

cant influence on the optimal choice of α given a fixed number of iterations. The

performance of the sequential MCMC detector is also shown for a 50 × 50 system,

which represents a ML decoding problem of huge complexity where an exhaus-

tive search would require 250 ≈ 1015 evaluations. For this problem even the sphere

decoder would have an enormous complexity under moderate SNR, and it has

actually been proved in [33] that the complexity of SD for SNR = O(ln(N)) is ex-

ponential. Therefore, it has not been possible to simulate the performance of this

decoder within a reasonable time and we have therefore initialized the radius of

the sphere to the minimum of either the norm of the transmitted symbol vector or

the solution found by the MCMC detector. This has been done in order to evaluate
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Figure 2.5: BER vs. iterations, 50 × 50 system. SNR = 12 dB.

the BER performance of the optimal detector. Figure 2.5 shows the BER curve as

a function of the iteration number while Figure 2.6 illustrates the BER curve vs.

the SNR. From these figures, we can see that a judiciously chosen α significantly

outperforms the traditional way of using noise variance for α2, which would be

α2 = 1 given the system model in the introduction section.

We now evaluate the complexity of the MCMC method. The complexity

of the MCMC method has been compared with the row-by-row semidefinite re-

laxation (SDR) detector described in [57]. The number of Multiply and Accumu-

late (MAC) instructions has been calculated for the SDR and the MCMC. Recall

from Section 2.3.5 and Section 2.3.6 that the complexity of MCMC with the QR-

factorization as a “preprocessing step” is O(kN(N + 1) + 2
3N

3 + 2N2) where k de-

notes the number of block iterations. The complexity of the SDR in [57] can be split
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Figure 2.6: BER vs. SNR, 50 × 50 system. Number of iterations, k = 300.

into three parts, namely an initialization step, an iterative phase, and a postpro-

cessing step. The initialization step of computation of C in [57] (Eq.3) costsO(N3+

2N2). Each iteration in the iterative phase costs O((N + 1)(N2 + 3
2N

2 + (N + 1)2))

MAC instructions while the postprocessing, involving approximation by Gaus-

sian randomization costs O(1
3N

3 + 3
2(N + 1)22N + 2N(N + 1)). In order to do a

fair comparison, the actual complexity (MAC instructions count) of the MCMC

method has been measured when it has the same BER performance as the SDR,

and this is shown in Figure 2.7. It is seen that, under equal BER performance, for

50 × 50 channel matrices, the MCMC detector has a smaller computational com-

plexity than the state-of-the-art low complexity SDR detector. Furthermore, the

computational complexity of the MCMC method has also been plotted when the

BER performance visually is very close to the ML solution.



www.manaraa.com

59

6 7 8 9 10 11 12 13 14
0

0.5

1

1.5

2

2.5
x 10

6

N
um

be
r 

of
 o

pe
ra

tio
ns

 (
M

A
C

)

SNR [dB]

 

 

MCMC complexity (when the BER is similar to ML)
MCMC complexity (when the BER is equal to SDR)
Complexity of SDP

Figure 2.7: Complexity comparison in terms of Multiply and Accumulate (MAC) instruc-
tions, 50 × 50 system.
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Now we compare the numerical BER performance of reversible MCMC de-

tector under fixed temperature α and temperature α+ which changes as a function

of SNR. Again, we simulate N ×N MIMO systems with channel matrices contain-

ing zero mean i.i.d Gaussian entries, where N = 10. Figure 2.8 shows the BER as a

function of SNR. 1000 iterations are used and the MCMC detectors are initialized

with a random input vector. As SNR increases, all the fixed temperature α choices

offer very bad error performance. Our proposed temperature α+ almost traces out

the best error performance at every SNR below 20 dB. When SNR increases be-

yond 20 dB, the BER performance for α+ keeps improving as SNR grows.

Now we consider numerical results related to the mixing time of reversible

MCMC detectors. In Figure 2.9, we plot the expected number of local minima in a

system as the problem dimension N grows. For each N , we generate 100 random

channel matrices and for each matrix, we examine the number of local minima

by exhaustive search. As the problem dimension N grows, the number of local

minima grows rapidly.

In Figure 2.10, we plot the probability of there existing a local minimum as

the problem dimension N grows. For each N , we generated 100 random chan-

nel matrices and for each matrix, we examined whether there exist local minima

by exhaustive search. As N grows, the empirical probability of there existing at

least one local minimum approaches 1. It is interesting to see that for N = 2, our

theoretical result 1
3 −

1√
5
+ 2 arctan(

√
5
3
)

√
5π

≈ 0.15 matches well with the simulations.

Figures 2.11 and 2.12 show the histograms of the number of local minima



www.manaraa.com

61

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

N

A
ve

ra
ge

 N
um

be
r 

of
 L

oc
al

 M
in

im
a

Figure 2.9: Average number of local minima.
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Figure 2.10: The probability of having local minima.

for N = 10 and 12 respectively, under SNR = 10. For each parameter N , we used

exhaustive search to examine the number of local minima in 100 randomly cho-

sen Gaussian channel matrices. Obviously, the average number of local minima

increases as N increases, while the frequency of 0 local minima decreases.

Figure 2.13 presents the histograms of the spectral gap when there are 0,
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1, 2, and 3 local minima respectively for N = 5 and SNR = 10. We generated 105

randomly Gaussian channel matrices. In each matrix we examined the number of

local minima and calculated the spectral gap when α2 = 1. For all these figures,

each bar represents the percentage of matrices which fall in a spectral gap interval

of 0.01. We can see that, when there is 0 local minimum, around 50 percent of the

matrices’ spectral gap fall between 0.19 and 0.2, suggesting these MCMC detectors

mix fast. However, when there is at least one local minimum, a high percentage

of the matrices have spectral gap values between 0 and 0.01. This percentage in-

creases with the increasing of the number of local minima.
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Figure 2.11: Histograms of the number of local minima for N=10.
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Figure 2.12: Histograms of the number of local minima for N=12.
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Figure 2.13: Spectral gap with (a) 0 (b) 1 (c) 2 (d) 3 local minima.
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2.9 Appendix

2.9.1 Proving Lemma 2.4.1

Lemma 2.4.1 (Gaussian Integral) Let v and x be independent Gaussian random

vectors with distribution N(0, IN) each. Let η ≤ 0 be a constant number, and let a be an

arbitrary constant. We further assume that 1 − 2a2η(1 + 2η) > 0. Then

E{eη(∥v+ax∥2−∥v∥2)} = ( 1

1 − 2a2η(1 + 2η)
)
N/2

. (2.44)

Proof: In order to calculate E, we compute the multivariate integral

E{eη(∥v+ax∥2−∥v∥2)} (2.45a)

= ∫
dxdv

(2π)N
e

− 1
2

⎡⎢⎢⎢⎢⎢⎣
vT , xT

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IN −2aηIN

−2aηIN (1 − 2a2η)IN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v

x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.45b)

= 1

det1/2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

IN −2aηIN

−2aηIN (1 − 2a2η)IN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.45c)

= 1

detN/2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −2aη

−2aη 1 − 2a2η

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.45d)

= ( 1

1 − 2a2η(1 + 2η)
)
N/2

. (2.45e)

The integral in (2.45b) is finite because η ≤ 0 and 1 − 2a2η(1 + 2η) ≥ 0 guarantee the
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positive definiteness of the matrix involved.

2.9.2 Proving Lemma 2.7.1

Proof. Let N be an even integer. Consider a matrix whose first N
2 columns hi, 1 ≤

i ≤ N
2 have unit norms and are orthogonal to each other. For the other N

2 columns

hi, N2 + 1 ≤ i ≤ N , hi = −(1 + ε)hi−n
2
, where ε is a sufficiently small positive number

(ε < 1). We also let y = H́(−1), where 1 is an all-1 vector. So −1 is a globally

minimum point for this ILS problem.

Consider all those vectors x̃′ which, for any 1 ≤ i ≤ N
2 , its i-th element and

i + N
2 -th element are either simultaneously +1 or simultaneously −1. When ε is

smaller than 1, we claim that any such a vector except the all −1 vector x̃, is a local

minimum, which shows that there are at least 2
N
2 − 1 local minima.

Assume that for a certain 1 ≤ i ≤ N
2 , the i-th element and (i + N

2 )-th element

of x̃′ are simultaneously −1. Then if we change the i-th element to +1, ∥y − H́x̃′∥2

increases by 4; and if we change the (i + N
2 )-th element to +1, ∥y − H́x̃′∥2 increases

by 4(1 + ε)2. This is true because the i-th and (i + N
2 )-th columns are orthogonal to

other (N − 2) columns.

Similarly, assume that for a certain 1 ≤ i ≤ N
2 , the i-th element and (i + N

2 )-

th element of x̃′ are simultaneously +1. Then if we change the i-th element to −1,

∥y − H́x̃′∥2 increases by 4(1 + ε)2 − 4ε2; and if we change the (i + N
2 )-th element to

−1, ∥y − H́x̃′∥2 increases by 4 − 4ε2.



www.manaraa.com

66

2.9.3 Proving Lemma 2.7.4

Proof. When υ = 0, clearly x̃ = (−1,−1) is a global minimum point, not a local

minimum point. It is also clear that x̃ = (−1,1) or x̃ = (1,−1) can not be a local

minimum point since they are neighbors to the global minimum solution. So the

only possible local minimum point is x̃ = (1,1).

From Lemma 2.7.2, the corresponding necessary and sufficient condition is

hT1 h2 < −
∥h1∥2

2
= −∥h2∥2

2
= −1

2
.

This means the angle θ between the two 2-dimensional vectors h1 and h2 satisfy

cos(θ) < −1
2 . Since h1 and h2 are two independent uniform randomly sampled

vector, the chance for that to happen is π−arccos (− 1
2
)

π = 1
3 .

2.9.4 Proving Lemma 2.7.5

Proof. When υ = 0, clearly x̃ = (−1,−1) is a global minimum point, not a local

minimum point. It is also clear that x̃ = (−1,1) or x̃ = (1,−1) can not be a local

minimum point since they are neighbors to the global minimum solution. So the

only possible local minimum point is x̃ = (1,1).

From Lemma 2.7.2, the corresponding necessary and sufficient condition is

hT1 h2 < −max{∥h1∥2

2
,
∥h2∥2

2
} .
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This means the angle θ between the two 2-dimensional vectors h1 and h2 satisfy

r1r2 cos(θ) < −max{r2
1, r

2
2}

2
,

where r1 and r2 are respectively the `2 norm of h1 and h2.

Because the elements of H́ are independent Gaussian random variables, r1

and r2 are thus independent random variables following the Rayleigh distribution

p(r1) = r1e
− r

2
1
2 , p(r2) = r2e

− r
2
2
2 ,

while θ follows a uniform distribution over [0,2π)

By symmetry, for t ≥ 1,

P (max{r2
1, r

2
2}

r1r2

> t)

= 2∫
∞

0
r1e

− r
2
1
2 × ∫

r1
t

0
r2e

− r
2
2
2 dr2 dr1

= 2∫
∞

0
r1e

− r
2
1
2 × (1 − e−

r21
2 )dr1

= 2(1 − ∫
∞

0
r1e

−( 1
2
+ 1

2t2
)r2

1 dr1)

= 2

t2 + 1
.

Since θ is an independent random variable satisfying cos(θ) < −max{r2
1 ,r

2
2}

2r1r2

and cos(θ) ≥ −1, the probability that x̃ = (+1,+1) is a local minimum is given by

P = ∫
2

1
(1 − 2

t2 + 1
)′(1 −

arccos(− t
2)

π
)dt
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= ∫
2

1

4t

(t2 + 1)2
(1 −

arccos(− t
2)

π
)dt.

= 1

3
− 1√

5
+

2 arctan(
√

5
3)√

5π
,

which is approximately 0.145696.
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CHAPTER 3
OPTIMAL NON-COHERENT DATA DETECTION FOR MASSIVE SIMO

WIRELESS SYSTEMS WITH GENERAL CONSTELLATION: A
POLYNOMIAL COMPLEXITY SOLUTION

3.1 The Joint Channel Estimation and Signal Detection Problem

We assume a block fading channel for the SIMO system, and let T denote

the channel block length during which the channel coefficients remain constant.

In this channel coherence block, the receiver output for a SIMO system with N

receive antennas is given by

X = hs∗ +W, (3.1)

where h ∈ CN×1 is the SIMO channel vector, s∗ ∈ C1×T is the transmitted symbol

sequence, and W ∈ CN×T is an additive noise matrix whose elements are i.i.d. zero-

mean circularly-symmetric complex Gaussian random variables. We also assume

the entries of s∗ are i.i.d. symbols from a certain constellation Ω (such as BPSK or

16-QAM).

We assume h as a deterministic unknown channel with no prior information

known about it. Then, the GLRT-optimal JED problem for SIMO systems is given

by the following mixed optimization problem:

min
h,s∗∈ΩT

∥X − hs∗∥2, (3.2)

where ΩT denotes the set of T -dimensional signal vectors. From [30], the optimiza-

tion of (3.2) over h is a least square problem while the optimization of (3.2) over
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s∗ is an integer least square problem, since each element of s∗ comes from a fixed

constellation Ω. By [29], for any given symbol vector s∗, the channel vector h that

minimizes (3.2) is

ĥ = Xs(s∗s)−1 = Xs/∥s∥2, (3.3)

Substituting (3.3) into (3.2), (3.2) is equivalent to the following optimization prob-

lem:

min
s∗∈ΩT

∥X(I − 1

∥s∥2
ss∗)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Ps

∥2 = min
s∗∈ΩT

tr(XPsX
∗) (3.4)

= tr(XX∗) − max
s∗∈ΩT

s∗X∗Xs

∥s∥2
. (3.5)

Hence, for the GLRT-optimal JED, we need to maximize s∗X∗Xs
∥s∥2 in (3.5). This

maximization depends on whether the constellation of the transmitted signal is

constant or not. For constant-modulus constellations, since ∥s∥2 is fixed, the au-

thors of [30] changed (3.5) to an equivalent problem:

max
s∗∈ΩT

s∗X∗Xs. (3.6)

Now that (3.6) is an integer quadratic maximization problem, the authors of [30]

further transformed (3.6) into another equivalent integer quadratic minimization

problem:

min
s∈ΩT

s∗(ρI − X∗X

N
)s, (3.7)
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where ρ is a slightly larger value than the maximum eigenvalue of X∗X
N . One way of

solving the integer quadratic minimization problem (3.7) is exhaustive search over

the entire signal space ΩT . However, exhaustive search has a complexity linear in

N but exponential in T [31].

The sphere decoder in [29] can efficiently solve (3.7) under high SNRs, since

the sphere decoder restricts search only to the lattice points within a search radius

r. More specifically, the sphere decoder only examines sequences s∗ satisfying

s∗(ρI − X∗X

N
)s ≤ r2. (3.8)

The efficiency of the sphere decoder to solve (3.8) depends on the search radius

r chosen probabilistically based on SNR [29], [58]. The sphere decoder in [29],

[58] has the limitation of providing the GLRT-optimal solution only for constant-

modulus modulations. The reason is that the optimization problem (3.5) is an in-

teger quadratic maximization problem only for constant-modulus constellations

such as BPSK and QPSK, but not for nonconstant-modulus constellations, because

different sequences s∗ can have different energies ∥s∥2.

3.2 GLRT-Optimal JED Algorithm for General Constellations

In this section we provide the first efficient GLRT-optimal JED algorithm

for massive SIMO systems with general constellations, including nonconstant-

modulus modulations.
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To describe our algorithm, we first represent the set of possible sequences

by a tree structure of T layers. The root node at layer-0 corresponds to an empty

sequence. We represent any sequence s∗i∶T as a layer-(T − i + 1) tree node, where

s∗i∶T = (s∗i , s∗i+1, ..., s
∗
T ) is a partial sequence. The tree node representing s∗i+1∶T is the

parent node of the tree node representing s∗i∶T .

The GLRT-optimal JED maximizes s∗X∗Xs
∥s∥2 , which is equivalent to

min
s∗∈ΩT

s∗(ρI − X∗X
N )s

∥s∥2
,

where ρ is a slightly larger value than the maximum eigenvalue of X∗X
N . This is

because s∗s/∥s∥2 is independent of the energy of s.

Let us factorize ρI − X∗X
N using the Cholesky decomposition as

ρI − X∗X

N
= R∗R, (3.9)

where R is a T × T upper triangular matrix.

Then we have

min
s∗∈ΩT

s∗(ρI − X∗X
N )s

∥s∥2
= min

s∗∈ΩT
s∗R∗Rs

∥s∥2

= min
s∗∈ΩT

∥Rs∥2

∥s∥2
. (3.10)
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We define Ms∗ = ∥Rs∥2, namely,

Ms∗ =
T

∑
i=1

∣
T

∑
k=i

Ri,ksk∣2, (3.11)

where Ri,k is the element of R in the i-th row and k-th column. For any i between

1 and T , we further define the unscaled metric

Ms∗i∶T
=

T

∑
t=i

∣
T

∑
k=t

Rt,ksk∣2 = ∥Ri∶T,i∶T si∶T ∥2
2. (3.12)

for any partial sequence s∗i∶T = (s∗i , s∗i+1, ..., s
∗
T ).

Since different sequences may have different energies, the ∥s∥2 term in (3.10)

prevents us from solving this minimization problem using the regular sphere de-

coder approach. Instead, we will lower bound ∥Rs∥2

∥s∥2 for partial sequences si∶T , tak-

ing sequence energy into consideration.

To lower bound ∥Rs∥2

∥s∥2 , we will divide the sequence s into two parts s1∶i−1 and

si∶T . For the partial sequence s∗i∶T , we define its metric M̄s∗i∶T
as,

M̄s∗i∶T
=

Ms∗i∶T

∣smax∣2(i − 1) + ∥s∗i∶T ∥2
. (3.13)

where Ms∗i∶T
is defined as in (3.12), and we use ∣smax∣2 to denote the maximum

energy of a single constellation symbol. 1 In fact, M̄s∗i∶T
is a lower bound on

1For example, the 16-QAM constellation Ω has 16 points a + bj, where a ∈ {±1,±3} and
b ∈ {±1,±3}. Thus, the maximum energy of a constellation point in 16-QAM is 32

+ 32
= 18.
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Ms∗
i∶T

∥s∗1∶i−1∥2+∥s∗i∶T ∥2 or ∥Rs∥2

∥s∥2 , as stated by the following lemma, the proof of which is given

in Appendix 3.8.1.

Lemma 3.2.1. For every sequence s and any index i, M̄s∗i∶T
≤ ∥Rs∥2

∥s∥2 .

Motivated by this lemma, we propose Algorithm 2 for the GLRT-optimal

JED for SIMO wireless systems with general constellations.2

Algorithm 2: The GLRT-optimal JED algorithm for general constellations.
Input:adius r, received signal X, constellation Ω and a 1 × T index vector I
Output:The GLRT-optimal decoded sequence ŝ∗

1. (preprocessing) Compute X∗X and the Cholesky decomposition of
(ρI −X∗X/N) = R∗R.

2. (start of tree search) Set i← T , I(i) ← 1 and set s∗i ← Ω(I(i)).

3. (Computing the bounds) Compute the metric M̄s∗i∶T
. If M̄s∗i∶T

> r2, go to 4;
else, go to 5;

4. (Backtracking) Find the smallest j such that i ≤ j ≤ T such that I(j) < ∣Ω∣. If
there exists such j, set i← j and go to 6; else go to 7.

5. If i = 1, store this current s∗ by setting ŝ∗ ← s∗, update r2 ← M̄s∗i∶T
and go to 4;

else set i← (i − 1), I(i) ← 1 and s∗i ← Ω(I(i)), go to 3.

6. Set I(i) ← (I(i) + 1) and s∗i ← Ω(I(i)). Go to 3.

7. If any sequence s∗ is ever found in Step 5, output the latest stored full-length
sequence ŝ∗ as the GLRT-optimal solution; otherwise, increase r (for
example, double r) and go to 2.

2It is worth noticing that, before the tree search stage, the GLRT-optimal JED algorithm
performs the preprocessing, when X∗X/N , the maximum eigenvalue ρ of X∗X/N , and
the Cholesky decomposition of (ρI −X∗X/N) are computed.
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Theorem 3.2.2. Algorithm 2 outputs the GLRT-optimal sequence ŝ∗, under general mod-

ulations.

Proof. We note that the algorithm will terminate after a finite number of doubling

the search radius r. Moreover, after the final time of doubling radius r, the radius

will not increase anymore in the subsequent search. Let ŝ∗ be the final sequence

output by the algorithm. We must have, when the algorithm terminates, r2 = M̄ŝ∗1∶T
.

We claim that any sequence s̃∗ other than ŝ∗ must have a partial sequence with

metric no smaller than M̄ŝ∗1∶T
; otherwise, the algorithm will explore the full length

sequence s̃∗, and end up giving a final r2 < M̄ŝ∗1∶T
, which is a contradiction.

Thus, for any sequence s̃∗ ≠ ŝ∗, there must be an index i (between 1 and T )

such that, for the partial sequence s̃∗i∶T , M̄s̃∗i∶T
≥ M̄ŝ∗1∶T

. This implies M̄s̃∗1∶T
is no smaller

than M̄ŝ∗1∶T
, because M̄s̃∗i∶T

is a lower bound on M̄s̃∗1∶T
. This proves that indeed ŝ∗ has

the smallest metric M̄ŝ∗1∶T
.

Remarks: When the constellation is constant-modulus, ∥s∥2 will be a con-

stant, and Algorithm 2 reduces to the sphere decoder algorithm in [29], although

with a different choice of search radius r.

3.2.1 Choosing the Initial Radius r

Choosing the initial radius r has a big influence on the complexity of this

GLRT-optimal algorithm. If r2 is chosen bigger than the metric of every sequence

s̃ ∈ ∣Ω∣T , Algorithm 2 may visit all the tree nodes under that radius. If r2 is too

small, the optimal sequence may have a metric larger than r2, and Algorithm 2
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will search again under a new larger radius, resulting in a higher computational

complexity.

In [29], [31], the authors derived the search radius r for the conventional

sphere decoder under constant-modulus constellations. [29], [31] chose the search

radius probabilistically such that the radius ensures the transmitted sequence has

a metric no bigger than r2 with high probability. However, the choice of the ini-

tial search radius in [29] is for a fixed number of receive antennas, and for high

signal-to-noise ratio (SNR); it is not clear how the expected complexity scales with

channel coherence time T under the probabilistically chosen search radius. More-

over, it is unknown what initial search radius should be used for massive SIMO

systems with a fixed SNR (not necessarily high).

In this chapter, we give a novel choice of the search radius r for the new

GLRT-optimal algorithm. This search radius is optimized for massive SIMO sys-

tems with general constellations and any fixed SNR.

Lemma 3.2.3. Let ∣smax∣2 and ∣smin∣2 be respectively the largest and the smallest possible

energy of a constellation point from Ω. Suppose the channel h has i.i.d. entries following

circularly-symmetric complex Gaussian distributions with zero mean and unit variance.

For massive SIMO systems, let us set the initial search radius r2 to be any nonzero positive

constant smaller than

∣smin∣4Dmin

∣smax∣4 + ∣smin∣2∣smax∣2
,

where Dmin = mina,b∈Ω ∥a − b∥2 is the minimum pairwise squared distance between any
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two constellation points. Then the true transmitted sequence s has a metric smaller than

r2 with high probability, as the number of antennas N →∞.

For instance, when the constellation is constant-modulus, ∣smin∣4Dmin
∣smax∣4+∣smin∣2∣smax∣2 =

Dmin
2 . As another example, if we consider the 16-QAM modulation, we have ∣smin∣2

∣smax∣2 =

12+12

32+32 = 1
9 . Then

∣smin∣4Dmin

∣smax∣4 + ∣smin∣2∣smax∣2
= 4Dmin

182 + 18 × 2
= Dmin

90
.

Choosing search radius r as in Lemma 3.2.3 ensures that the true trans-

mitted signal is inside the search radius with high probability. We provide the

derivation of this radius (namely Lemma 3.2.3) in Appendix 3.8.11. However, we

encourage the reader to postpone reading the proof of Lemma 3.2.3 until Section

3.5, after basic calculations for the Cholesky decompositions in Section 3.4.

In the next section, we derive the expected complexity for Algorithm 2. We

show under this new radius, Algorithm 2 has polynomial expected computational

complexity. We also remark that, for downlink beamforming, one can use the ĥ

generated from (3.3), where s∗ is the output from our GLRT-optimal JED algorithm.

3.3 Algorithm Computational Complexity: N Grows Independently of T

The computational complexity of Algorithm 2 for massive SIMO systems

is mainly determined by the number of visited nodes in each layer. By “visited

nodes”, we mean the partial sequences s∗i∶T for which the metrics M̄s∗i∶T
are com-

puted in the algorithm. The fewer the visited nodes, the lower computational

complexity of the GLRT-optimal JED algorithm.
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In this section, we will show in Theorem 3.3.1 that, for Algorithm 2, the

expected number of visited nodes in each layer will converge to a constant for

a sufficiently large number of receive antennas. For our theoretical analysis, we

consider a special case of Algorithm 2, where (in its Step 7) the search radius r

is increased to ∞ if the GLRT-optimal sequence is not found under the current

radius r. However, we remark that, in practical implementations, one is free to

use other protocols of increasing radius r, including doubling r after failure to find

the optimal sequence. Moreover, for concise presentations, we choose to state and

prove Theorem 3.3.1 only for constant-modulus constellations. Generalizations of

Theorem 3.3.1 to nonconstant-modulus constellations can be found in Section 3.5.

Theorem 3.3.1. Let us assume that the constellation Ω is constant-modulus. Let r2 be

a positive constant smaller than Dmin
2 , where Dmin = mina,b∈Ω ∥a − b∥2 is the minimum

pairwise squared distance between any two constellation points. We also assume sT is

known to the receiver to resolve the phase ambiguity. Then for the tree search stage of

Algorithm 2, the expected number of visited points at layer i converges to ∣Ω∣ for i ≥ 2, as

N → ∞. Algorithm 2 only visits one tree node at layer 1. Moreover, the average overall

computational complexity of Algorithm 2 is O(NT 2 + T 3), when, for any fixed T , N goes

to infinity.

Our proof strategy is to show the computational complexity of our algo-

rithm for matrix ρEI − E[X∗X]
N , where ρE is the maximum eigenvalue of E[X∗X]

N .

Then we prove the expected complexity for matrix ρI − X∗X
N , by using the fact that

X∗X
N converges to E[X∗X]

N in massive SIMO systems.
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Proof of Theorem 3.3.1. The number of visited nodes at layer (T − i+1) (1 ≤ i ≤ T −1)

in Algorithm 2 is equal to ∣Ω∣, if there is one and only one tree node s̃∗(i+1)∶T such

that M̄s̃∗
(i+1)∶T

≤ r2. In fact, we will prove that, the transmitted s∗(i+1)∶T will be the only

sequence satisfying M̄s̃∗
(i+1)∶T

≤ r2, with high probability as the number of receive

antennas N →∞.

To show this result, we first deriveE[X∗X], and factorize ρEI− E[X∗X]
N using

the Cholesky decomposition. Using the upper triangular matrix generated from

the Cholesky decomposition, we will then show that the true transmitted s∗(i+1)∶T

will be the only sequence satisfying M̄s∗
(i+1)∶T

≤ r2 under ρEI − E[X∗X]
N . In fact, we

can first write out (3.1) as

X = [s∗1h +w1 s∗2h +w2 ⋯ s∗Th +wT ],

where wi is the i-th column of W. Then E[X∗X] is equal to

E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s∗1h +w1)∗

(s∗2h +w2)∗

⋮

(s∗Th +wT )∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[s∗1h +w1 s∗2h +w2 ⋯ s∗Th +wT
]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.14)

Since the entries of h are independent complex Gaussian random variables with

zero mean and unit variance, E[h∗h] = E[∑Ni=1 h∗
i hi] = N . After some algebra, we
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have

E[X∗X]/N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1s∗1 + σ2
w s1s∗2 ⋯ s1s∗T

s2s∗1 s2s∗2 + σ2
w ⋯ s2s∗T

⋮ ⋮ ⋱ ⋮

sT s∗1 sT s∗2 ⋯ sT s∗T + σ2
w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.15)

We can see that (3.15) is a Hermitian matrix with a full column rank. The maximum

eigenvalue of E[X∗X]
N is ρE = T + σ2

w. Now we can write À = ρEI − E[X∗X]
N as

À =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T − s1s∗1 −s1s∗2 ⋯ −s1s∗T

−s2s∗1 T − s2s∗2 ⋯ −s2s∗T

⋮ ⋮ ⋱ ⋮

−sT s∗1 −sT s∗2 ⋯ T − sT s∗T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.16)

Using the Cholesky decomposition in [59], we can decompose ρEI − E[X∗X]
N

into R̀∗R̀ where R̀ is the upper triangular matrix of Cholesky decomposition rep-

resented by

R̀ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R̀1,1 R̀1,2 R̀1,3 ⋯ R̀1,T

0 R̀2,2 R̀2,3 ⋯ R̀2,T

0 0 R̀3,3 ⋯ R̀3,T

⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0 R̀T,T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

One can calculate R̀ recursively by starting with i = 1. For each i, R̀i,i =
√

Ài,i −∑i−1
k=1 R̀k,iR̀∗

k,i,

where Ài,i is the i-th diagonal entry of (ρEI − E[X∗X]
N ); moreover, for each j > i,
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R̀ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
T − 1

−(s1s
∗

2)√
T−1

−(s1s
∗

3)√
T−1

⋯ −(s1s
∗

T )√
T−1

0
√

T (T−2)
T−1 −(s2s∗3)

√
T

(T−1)(T−2) ⋯ −(s2s∗T )
√

T
(T−1)(T−2)

0 0
√

T (T−3)
T−2 ⋯ −(s3s∗T )

√
T

(T−2)(T−3)
⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0

√
T
2 −(sT−1s∗T )

√
T
2

0 ⋯ 0 0
√

T (T−T )
(T−T+1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.17)

R̀i,j = 1

R̀i,i
(Ài,j −(∑i−1

k=1 R̀k,iR̀∗
k,j)∗), where Ài,j is an entry of (ρEI − E[X∗X]

N ) with row

index i, and column index j.

Using this recursive relation, we have the following lemma about the ele-

ments of R̀. The proof of Lemma 3.3.2 is given in Appendix 3.8.2.

Lemma 3.3.2. Let À be given in (3.16). Then for every 1 ≤ i ≤ T ,

R̀i,i =
√

T (T − i)
T − i + 1

and for every j > i,

R̀i,j = −sis
∗
j

√
T

(T − i + 1)(T − i)
.

From this lemma, we notice that R̀T,T=0, and the smallest value for R̀i,i,

1 ≤ i ≤ T − 1, is
√

T
2 when i = T − 1. We illustrate the whole matrix R in (3.17).

Now let us use R̀ in (3.17) as the underlying upper triangular matrix in calculating

Ms∗1∶T
. Based on (3.11), Ms∗1∶T

( under matrix R̀ satisfies
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Ms∗1∶T
= s∗Às = s∗(TI − ss∗)s = T 2 − T 2 = 0, (3.18)

since s∗s = T . Because Ms∗ = ∑Ti=1 ∣∑Tk=i R̀i,ksk∣2, from (3.18), we must have ∣∑Tk=i R̀i,k

sk∣2 = 0 for every 1 ≤ i ≤ T . This, in turn, implies that Ms∗i∶T
= 0, and ∑Tk=i R̀i,ksk = 0

for every 1 ≤ i ≤ T . On the other hand, we have the following lemma (the proof

of which is provided in Appendix 3.8.11) about the metric of a non-transmitted

sequence, which applies to general constellation Ω.

Lemma 3.3.3. Let Ω be any constellation with Dmin = mina,b∈Ω ∥a − b∥2 as the minimum

pairwise squared distance between any two constellation points. Let s∗ be the transmitted

data sequence. Let us use the upper triangular matrix R̀ generated from the Cholesky

decomposition of ρEI − E[X∗X]
N , in calculating the sequence metric. For any s̃∗ such that

s̃∗ ≠ s∗, M̄s̃∗j∶T
≥ Dmin∣smin∣4

∣smax∣4+∣smin∣2∣smax∣2 at any layer j ≤ i, where i is the largest integer such

that s∗i ≠ s̃∗i .

For constant-modulus constellations, according to Lemma 3.3.3, for any

other s̃ ≠ s, M̄s̃∗i∶T
≥ TDmin

2 , where i is the integer closest to T such that s∗i ≠ s̃∗i .

Under the assumption that X∗X = E[X∗X], Algorithm 2 will visit only 1 tree node

at layer T , namely s∗T , whose metric is equal to 0. ( We have only 1 tree node

at layer T because s∗T is predetermined, in order to resolve phase ambiguity.) At

layer i, where i < T , we only have one sequence s̃∗i∶T = s∗i∶T such that M̄s̃∗i∶T
< r2, when

r2 is picked to be any positive constant smaller than Dmin
2 . This proves Theorem

3.3.1, under the assumption that X∗X = E[X∗X].
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Now we proceed to prove that, with high probability, X∗X/N is close to

E[X∗X]/N , and thus the expected number of visited nodes under ρI − X∗X
N is very

close to the case under ρEI − E[X∗X]
N . In fact, (X∗X)i,j

N can be written as the average

of N independent random variables under the considered channel model:

(X∗X)i,j
N

=
(s∗i h +wi)∗(s∗jh +wj)

N

=

N

∑
k=1

(s∗i hk +wk,i)∗(s∗jhk +wk,j)

N
(3.19)

where wi is the i-th column of W. Then we can find the expectation and the vari-

ance of (3.19) as follows:

E[
(X∗X)i,j

N
] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 + σ2
w, if i = j

sis∗j , otherwise

(3.20)

var(
(X∗X)i,j

N
) = (1 + 2σ2

w + σ4
w)/N. (3.21)

We provide the proof of (3.21) in Appendix 3.8.4.

The weak law of large numbers states that the sample mean of a random

variable converges to its expectation in probability. Thus, for any pair 1 ≤ i, j ≤ N ,

for any constant ξ > 0 and ε > 0, as N →∞, we have

P (∣
(X∗X)i,j

N
−
E[(X∗X)i,j]

N
∣ ≥ ε) ≤ ξ. (3.22)
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This means that, for any ξ > 0 and ε > 0, as N →∞, we have

P (∥X∗X

N
− E[X∗X]

N
∥F ≤ ε) ≥ 1 − ξ, (3.23)

where ∥ ⋅ ∥F is the Frobenius norm.

Since ρ is the maximum eigenvalue of X∗X
N , by the triangular inequality for

the spectral norm, we have

∣ρ − ρE ∣ ≤ ∥X∗X

N
− E[X∗X]

N
∥2.

Since

∥X∗X

N
− E[X∗X]

N
∥2 ≤ ∥X∗X

N
− E[X∗X]

N
∥F ,

we have

∣ρ − ρE ∣ ≤ ∥X∗X

N
− E[X∗X]

N
∥F ≤ ε,

with probability at least 1 − ξ, as N →∞.

Using the triangular inequality for the spectral norm and the Frobenius

norm, we have

∥ρI − X∗X

N
− (ρEI −

E[X∗X]
N

)∥2 ≤ 2ε,

and

∥ρI − X∗X

N
− (ρEI −

E[X∗X]
N

)∥F ≤ (
√
T + 1)ε,

with probability at least 1 − ξ, as N →∞.
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Now since the Cholesky decomposition of (ρI − X∗X
N ) is continuous at the

point À = ρEI − E[X∗X]
N , for any ε > 0 and ξ > 0, as N →∞,

∥R − R̀∥F ≤ ε

holds true with probability at least 1 − ξ. Let us use Ri∶T (R̀i∶T ) to denote a matrix

composed of the i-th to T -th rows of matrix R (R̀). Then as N → ∞, for any full-

length sequence s̃∗, with probability at least 1 − ξ,

∣
√
M R̀

s̃∗i∶T
−
√
MR

s̃∗i∶T
∣ ≤ ∥(Ri∶T − R̀i∶T )̃s∥2 ≤ ∥̃s∥∥R − R̀∥F ,

which is no bigger than ∥̃s∥ε. Note here the superscripts R and R̀ in M R̀
s̃∗i∶T

and MR
s̃∗i∶T

describe which upper triangular matrix is used in calculations.

We recall that the metric M̄s̃∗i∶T
is defined as Ms̃∗i∶T

/(∣smax∣2(i − 1) + ∥s∗i∶T ∥2).

Then we have

∣
√
M̄ R̀

s̃∗i∶T
−
√
M̄R

s̃∗i∶T
∣ (3.24)

≤ ∥̃s∥ε√
∣smax∣2(i − 1) + ∥s∗i∶T ∥2

(3.25)

=
√
T√
T
ε = ε. (3.26)

We define d = mins̃,i ∣
√
M̄ R̀

s̃i∶T
−r∣. Due to Lemma 3.3.3, if we let r be a positive

constant smaller than
√

Dmin
2 , then d must be a positive constant. Thus if we take

ε < d, then
√
M̄R

s̃i∶T
> r if s̃i∶T ≠ si∶T and i < T ; on the other hand,

√
M̄R

si∶T
< r for the
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transmitted sequence s. Because at any layer i, the partial sequence si∶T is the only

partial sequence with metric smaller than r, the number of visited nodes at each

layer is equal to ∣Ω∣ under matrix ρI − X∗X
N , with probability at least (1 − ξ). Thus

for any constant ξ > 0, as N →∞, the expected number of visited nodes at layer i is

upper bounded by

∣Ω∣ + 2(1 − ξ)∣Ω∣i.

This is because under r = ∞, the largest number of visited nodes at layer i is ∣Ω∣i;

and before r is increased to ∞, Algorithm 2 visits at most ∣Ω∣i tree nodes at layer i.

Taking an arbitrarily small ξ > 0, the expected number of visited nodes at layer i

will approach ∣Ω∣.

The preprocessing step of Algorithm 2 requiresO(NT 2) computational com-

plexity for computing X∗X, andO(T 3) complexity for computing the Cholesky de-

composition. For computing the metric of each tree node recursively in the depth-

first tree search, O(T ) computational complexity is required. Thus the average

overall computational complexity of Algorithm 2 is O(NT 2 + T 3), when, for any

fixed T , N goes to infinity.

Remarks: Although our theoretical analysis is for massive SIMO systems,

our algorithm also works for SIMO systems with a small number of receive an-

tennas, without requiring the number of receive antennas N to be approaching

infinity.

In summary, we have shown that, under a fixed σ2
w or SNR, Algorithm 2
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can achieve an expected complexity of polynomial growth. In fact, as stated in

Theorem 3.3.4, we can even lower the SNR requirement for each antenna, while

still providing the GLRT-optimal JED with polynomial expected complexity.

Theorem 3.3.4. Let the constellation Ω be constant-modulus. Let r2 be a positive con-

stant smaller than Dmin
2 , where Dmin = mina,b∈Ω ∥a − b∥2 is the minimum pairwise squared

distance between any two constellation points. If σ2
w = o(

√
N), then for Algorithm 2, the

expected number of visited points at layer i converges to ∣Ω∣ for i ≥ 2, as the number of

receive antennas N goes to infinity. Algorithm 2 only visits one tree node at layer 1. Here

o(
√
N) means that limN→∞ σ2

w/
√
N = 0.

In fact, we can prove Theorem 3.3.4 through the same arguments as in

proving Theorem 3.3.1, by noting that the variance var( (X∗X)i,j
N ) converges to 0

as N → ∞, if σ2
w = o(

√
N). Since we fix the transmission power and the wireless

channel model, σ2
w = o(

√
N) means that the SNR per receive antenna is allowed to

decrease, as long as SNR
√
N → ∞ as N → ∞. For example, the SNR can scale as

O(log(log(N))/
√
N) asN →∞. This implies that we can achieve the GLRT-optimal

JED with low complexity, while increasing the energy efficiency of massive SIMO

systems.

3.4 Algorithm Computational Complexity: N grows polynomially in T

In the previous section, we obtained the expected computational complex-

ity for tree search when N → ∞. However, the total computational complexity of

Algorithm 2 also includes the complexity of calculating X∗X, which has a compu-
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tational complexity of O(NT 2). Thus the total computational complexity of Algo-

rithm 2 can still grow very fast (for example, exponentially) with T , if N needs to

grow exponentially in T . Then the natural question is whether the total compu-

tational complexity of Algorithm 2 grows polynomially in T . To see whether the

total computational complexity of Algorithm 2 grows polynomially in T , we will

need to find the scaling of N in terms of T such that the expected tree search com-

plexity still grows polynomially in T . In this section, we prove that a polynomial

growth of N in T suffices to make the expected tree search complexity grow poly-

nomially in T . Again, for simplicity of proof presentation, we perform the proof

for constant-modulus signals.

Theorem 3.4.1. Let Ω be a constant-modulus constellation. Let r2 = Dmin
8 , where Dmin =

mina,b∈Ω ∥a − b∥2 is the minimum pairwise squared distance between any two constella-

tion points. The expected overall complexity (including preprocessing and tree search) of

Algorithm 2 grows polynomially in T , even when N grows polynomially with T .

Before presenting the full proof, let us first outline the main idea of our

proof. There are two key elements in the proof of this theorem: tightly bound-

ing the concentration of X∗X/N around E(X∗X)/N , and carefully characteriz-

ing the stability of the Cholesky decomposition of ρI − X∗X
N around ρEI − E[X∗X]

N .

Among these two key elements, proving the stability of the Choleksy decomposi-

tion around ρEI− E(X∗X)
N is particularly challenging. This is because existing stabil-

ity results for the Cholesky decomposition in the literature (for example, [60], [61])

are for full-rank matrices; however, ρEI − E[X∗X]
N happens to be a rank-deficient
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matrix and existing stability results for the Cholesky decomposition do not apply.

In our proof, we show that the stability of the Cholesky decomposition

around ρEI − E[X∗X]
N is sufficient to guarantee small enough perturbations in the

upper triangular matrix R. Small perturbations in R in turn lead to small per-

turbations of data sequences’ metrics. We show that the perturbations of data se-

quences’ metrics decay fast enough in N , such that N growing only polynomially

in T is sufficient to guarantee polynomial growth (in T ) of the expected computa-

tional complexity of Algorithm 2.

Proof. (of Theorem 3.4.1) We first give a large deviation bound on the concentration

of X∗X/N towards E(X∗X)/N . We consider two types of elements of X∗X/N : the

diagonal elements and the off-diagonal elements. For the diagonal elements, we

have Lemma 3.4.2 detailing its concentration.

Lemma 3.4.2. Suppose the elements of h are i.i.d. circularly symmetric complex Gaussian

random variables with 0 mean and variance 1. Then for each i ∈ {1,2, ..., T}, for any ε > 0

− log(P (
(X∗X)i,i

N
− (1 + σ2

w) < −ε)) /N

≥ − ε

1 + σ2
w

+ log(1 + ε

(1 + σ2
w) − ε

)

≥ ε2

2(1 + σ2
w)2

.

and
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− log(P (
(X∗X)i,i

N
− (1 + σ2

w) > +ε)) /N

≥ ε

1 + σ2
w

+ log(1 − ε

(1 + σ2
w) + ε

)

≥ ε2

2(1 + σ2
w)2

− ε3

3(1 + σ2
w)3

,

where P (⋅) means the probability. Moreover, if ε ≤ 1 + σ2
w, we have

− log(P (
(X∗X)i,i

N
− (1 + σ2

w) > +ε)) /N ≥ ε2

6(1 + σ2
w)2

.

The proof of Lemma 3.4.2 is given in Appendix 3.8.5. Moreover, we have the

following concentration result Lemma 3.4.3 for the off-diagonal entries of X∗X/N .

Lemma 3.4.3. Suppose the elements of h are i.i.d. circularly symmetric complex Gaussian

random variables with 0 mean and variance 1. Then for i, j ∈ {1,2, ..., T} and i ≠ j, for

any ε > 0,

P (∣
(X∗X)i,j

N
− sis

∗
j ∣ > ε)

≤ e−N[− ε
13
+log( 13

13−ε
)] + e−N[ ε

13
+log( 13

13+ε
)]

+ 8e−N[−1+
√

1+4ε′2

2
+ 1

2
log(1−[−1+

√

1+4ε′2

2ε
]2)]

+ 4e−N[−1+
√

1+4ε′′2

2
+ 1

2
log(1−[−1+

√

1+4ε′′2

2ε
]2)],
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where ε′ = 2ε
13σw

and ε′′ = 2ε
13σ2

w
. The proof of Lemma 3.4.3 is given in Appendix 3.8.6.

Moreover,

P (∣
(X∗X)i,j

N
− sis

∗
j ∣ > ε)

≤ e−Nε
2

338 + e−Nε
2

1014 + 8e
− Nε2

169σ2
w + 4e

− Nε2

169σ4
w

when ε ≤ min{13σw√
2
, 13σ2

w√
2
,13}.

We have the following Lemma 3.4.4 about the convergence of A = ρI −

X∗X/N to matrix À = ρEI −E{XX∗}/N appearing in (3.16). The proof of Lemma

3.4.4 is deferred to Appendix 3.8.8.

Lemma 3.4.4. Let us suppose that ∣(X∗X/N)i,j − (E{X∗X}/N)i,j ∣ < ε holds for every

pair (i, j) ∈ {1,2,⋯, T} × {1,2,⋯, T}. Then the maximum eigenvalue, denoted by ρ, of

X∗X/N , satisfies

∣ρ − ρE ∣ ≤ Tε.

Moreover, ∣(ρI −X∗X/N)i,j − (ρEI −E{X∗X}/N)i,j ∣ < (T + 1)ε, for every pair (i, j) ∈

{1,2,⋯, T} × {1,2,⋯, T}.

We then have the following key lemma about the robustness of the Cholesky

decomposition, the proof of which is given in Appendix 3.8.9.

Lemma 3.4.5. Suppose that each element of A = ρI −X∗X/N deviates from À = ρEI −

E[X∗X/N] by a number with amplitude no more than ε, where ε < 1
e4T 2 . Let us denote
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the Cholesky decomposition of A as R∗R, and denote the Cholesky decomposition of À as

R̀∗R̀, where R̀ and R are upper triangular matrices. Let us further assume that T ≥ 4.

Then for k < T , we have

∣Rk,k − R̀k,k∣ ≤ ∣εk∣
√

T − k + 1

T (T − k)

≤ ∣ε∣e4

√
T 3

(T − k + 1)3(T − k)

≤ ∣ε∣e4

√
T 3

8
,

where

∣εk∣ ≤ ∣ε∣e4 T 2

(T − k + 1)2
.

For k < j and k < T ,

∣Rk,j − R̀k,j ∣ ≤ ∣εk∣
T

2(T − k + 1)(
√

T (T−k)
T−k+1 − ∣εk∣)3

+ ∣εk∣√
T (T−k)
T−k+1 − ∣εk∣

≤ ∣ε∣e4T
√
T . (3.27)

Moreover, for k = T , we have

∣RT,T − R̀T,T ∣ ≤ Te2
√

∣ε∣.

From Lemma 3.4.5, we know that when ε < 1
2e4T 2 , Te2

√
∣ε∣ ≥ εe4

√
T 3

8 and



www.manaraa.com

93

Te2
√

∣ε∣ ≥ εe4T
√
T . Thus when ε < 1

2e4T 2 , each element of R − R̀ is bounded by

Te2
√

∣ε∣ in magnitude.

Building on these bounds for the perturbations of R, we further use Lemma

3.4.6 to bound the perturbation of the unscaled metric of a partial sequence in

Algorithm 2. We again defer the proof of Lemma 3.4.6 to Appendix 3.8.10.

Lemma 3.4.6. Let P be a T × T matrix such that Ri,j − R̀i,j = Pi,j , for 1 ≤ i, j ≤ T . Let

M R̀
s∗i∶T

denote the unscaled metric (defined in (3.12)) of the partial sequence s∗i∶T under R̀,

and MR
s∗i∶T

denote the unscaled metric of s∗i∶T under R. Then we have

√
MR

s∗i∶T
≤
√
M R̀

s∗i∶T
+

¿
ÁÁÀ

T

∑
t=i

T

∑
j=i

∣Pt,j ∣2
√
T − i + 1

and
√
MR

s∗i∶T
≥
√
M R̀

s∗i∶T
−

¿
ÁÁÀ

T

∑
t=i

T

∑
j=i

∣Pt,j ∣2
√
T − i + 1.

We are now ready to prove Theorem 3.4.1. Suppose that each element of

X∗X/N deviates from its counterpart E{X∗X}/N by a number no bigger than ε in

magnitude. Then according to Lemma 3.4.4, each element of ρI −X∗X/N deviates

from ρEI−E{X∗X}/N by at most (T +1)ε. According to Lemma 3.4.5, each element

of R deviates from R̀ by at most e2T
√

(T + 1)ε in amplitude, when (T + 1)ε < 1
2e4T 2 ,

namely ε ≤ 1
2e4T 2(T+1) . According to Lemma 3.4.6, for each partial sequence s∗i∶T , the
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square root of its unscaled metric
√
MR

s∗i∶T
will deviate from

√
M R̀

s∗i∶T
by at most

√
(e2T

√
(T + 1)ε)2 × T 2 ×

√
T = T 2.5e2

√
(T + 1)ε.

Let us take ε > 0 such that

T 2.5e2
√

(T + 1)ε < 1

2

√
DminT

2
,

and

(T + 1)ε < 1

2e4T 2
.

Namely,

ε ≤ min{ Dmin

8T 4e4(T + 1)
,

1

2e4T 2(T + 1)
} = Dmin

8T 4e4(T + 1)
,

because Dmin = mina,b∈Ω ∥a − b∥2 ≤ 4 for Ω with unit-energy constellation points.

With this choice of ε, under a search radius r = 1
2

√
Dmin

2 (corresponding to

an unscaled metric whose square root is 1
2

√
TDmin

2 ), Algorithm 2 will visit the same

number of tree nodes as under R̀. This is because under R̀, the square root of

the unscaled metric of a partial sequence different from the transmitted sequence

is at least
√

TDmin
2 (noting that R̀i,i is at least

√
T
2 when i < T ); moreover, under

R̀, the true transmitted sequence has a metric equal to 0. With T 2.5e2
√

(T + 1)ε <

1
2

√
DminT

2 and r = 1
2

√
Dmin

2 , the perturbations in the metrics of partial sequences are

guaranteed to be small enough such that only partial sequences of the transmitted

signal s∗ have metrics within the search radius.
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Now let us examine the probability of the abnormal event that some ele-

ment of X∗X/N deviates from its counterpart in E{X∗X}/N by a number bigger

than ε = Dmin
8T 4e4(T+1) in magnitude. By the union bound over the T 2 elements of

X∗X/N , according to Lemma 3.4.2 and Lemma 3.4.3, this probability is at most

T 2 × (5e−αNε2) when ε = Dmin
8T 4e4(T+1) (note that we consider T →∞), where

α = min{ 1

6(1 + σw)2
,

1

338
,

1

1014
,

1

169σ2
w

,
1

169σ4
w

}

= min{ 1

6(1 + σw)2
,

1

1014
,

1

169σ2
w

,
1

169σ4
w

}

Under the abnormal event, Algorithm 2 will at most visit 2∣Ω∣T tree nodes (each tree

node update needsO(T ) operations). Thus, if (2∣Ω∣T )×(5T 2e−αNε
2) is polynomially

growing with T , the expected complexity of Algorithm 2 will be polynomial in T .

This polynomial growth of Algorithm 2’s overall computational complexity is true

as long as

N ≥ T log(∣Ω∣) + log(10) + 2 log(T ) +O(log(T ))
αε2

≥ [T log(∣Ω∣) + log(10) + 2 log(T ) +O(log(T ))]

× (64

α
T 8e8(T + 1)2)

= O(T 11).

This proves our main Theorem 3.4.1.

Remarks: We remark that the bounds N = O(T 11) can be quite conserva-
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tive. By further sharpening the stability analysis of the Cholesky decomposition,

one can possibly reduce the number of antennas N in order to guarantee overall

computational complexity polynomial in T . Our simulations show that in practice

way fewer receive antennas than T 11 are sufficient to guarantee Algorithm 2 visits

only around ∣Ω∣ tree nodes at each layer, with high probability.

3.5 Computational Complexity for Nonconstant-Modulus Constellations

So far, we have shown that the complexity results for constant-modulus

constellations. In this subsection, we will extend our results to general constella-

tions. Since the derivations for general constellations are similar to that for constant-

modulus constellations, we will only give the new theorem statement, and high-

light key differences in the derivations.

Theorem 3.5.1. Let Ω be a constant-modulus or nonconstant-modulus constellation. Let

∣smax∣2 and ∣smin∣2 be respectively the largest and the smallest possible energy of a constel-

lation point from Ω. Let r2 be a positive constant smaller than

∣smin∣4Dmin

∣smax∣4 + ∣smin∣2∣smax∣2
,

where Dmin = mina,b∈Ω ∥a − b∥2 is the minimum pairwise squared distance between any

two constellation points. Suppose the channel h has i.i.d. entries following circularly-

symmetric complex Gaussian distributions with zero mean and unit variance. We further

assume that sT is known to the receiver to resolve the phase ambiguity. Then for Algorithm

2, the expected number of visited points at layer i converges to ∣Ω∣ for i ≥ 2, as the number
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of receive antennas N goes to infinity. Algorithm 2 only visits one tree node at layer 1.

Moreover, the overall expected computational complexity of Algorithm 2 is O(NT 2 + T 3)

if N grows polynomially in T .

We now outline the key steps in deriving Theorem 3.5.1. Taking the same

analysis as in deriving Theorems 3.3.1 and 3.4.1 for constant-modulus constella-

tions, we can write the maximum eigenvalue of the Hermitian matrix E[X∗X]
N as

ρE = ∑Tk=1 ∥sk∥2 + σ2
w. Then we can represent À = ρEI − E[X∗X]

N as

À =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t − s1s∗1 −s1s∗2 ⋯ −s1s∗T

−s2s∗1 t − s2s∗2 ⋯ −s2s∗T

⋮ ⋮ ⋮ ⋮

−sT s∗1 −sT s∗2 ⋯ t − sT s∗T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where t = ∑Tk=1 ∥sk∥2. After decomposing À using Cholesky decomposition, we can

find the upper triangular matrix R̀ such that À = R̀∗R̀. Then using the recursive

relation for calculating the Cholesky decomposition as mentioned in the proof of

Theorem 3.3.1, we can obtain that the diagonal entries of the R̀ is given by

R̀i,i =

¿
ÁÁÀt − ∣∣si∣∣2 −

i−1

∑
j=1

∣∣sj ∣∣2∣∣si∣∣2t
(t − ∣∣s1∶j−1∣∣2)(t − ∣∣s1∶j ∣∣2)

. (3.28)

We can find the metric M̄s∗1∶T
of the transmitted signal s∗ as

M̄s∗1∶T
= s∗Às

∥s∥2
= s∗(tI − ss∗)s

∥s∥2
= 0, (3.29)
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since s∗s = t. As a result, M̄s∗i∶T
= 0 for any partial sequence s∗i∶T of the transmitted

sequence s∗1∶T . On the other hand, according to Lemma 3.3.3, for any other signal

s̃ ≠ s, M̄s̃∗j∶T
≥ ∣smin∣4Dmin

∣smax∣4+∣smin∣2∣smax∣2 at any layer j ≤ i, where i is the largest integer such

that s∗i ≠ s̃∗i .

Thus if we set r2 < ∣smin∣4Dmin
∣smax∣4+∣smin∣2∣smax∣2 , under the expected matrices, Algo-

rithm 2 will only visit ∣Ω∣ nodes in each layer. Following similar concentration

arguments for the matrix ρI − X∗X
N , and the perturbation analysis as in Theorems

3.2.2 and 3.3.1, we can similarly prove Theorem 3.5.1.

3.6 Tree Search Algorithm

In the sections above, we consider each partial sequence as a node in a tree

structure of T layers. The computational complexity of the earlier algorithms heav-

ily depends on how the initial search radius r is chosen. Although the search ra-

dius r is chosen so that the true transmitted sequence is within the sphere with

high probability, the radius does not guarantee the minimum number of visited

nodes in the tree search.

In this section we design a best-first branch-and-bound tree search algo-

rithm for GLRT-optimal JED that does not need an assigned initial radius r. We call

this algorithm the Tree Search Algorithm (TSA). In contrast to our GLRT-optimal

algorithm in the previous section, TSA sets the initial search radius as zero at the

beginning of the algorithm. Then the radius r in TSA systematically increases until

the optimal JED solution is found. This algorithm guarantees to visit no more tree
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nodes than the algorithm in the previous sections. We will show that our previous

complexity results also upper bound the complexity of TSA. Moreover, we prove

that this new TSA applies to nonconstant-modulus constellations.

We first introduce several terminologies about the tree structure we are us-

ing. A partial sequence s̃∗i∶T , 1 ≤ i ≤ T , corresponds to a layer-(T − i + 1) node in the

tree. A node s̃∗i∶T = (̃s∗i , s̃∗i+1∶T ) is called a child node of its parent node s̃∗i+1∶T . The

parent node of any layer-1 node s̃∗T is called the root node. In a tree, any tree node

without a child node is called a leaf node. For example, in (b) of Figure 3.1, node 1

is the root node, and node 2 is the parent node of node 9.

4
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(a) First search iteration

4
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1
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(b) Second search itera-
tion
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10

11

13

12

3

(c) Third search iteration

Figure 3.1: Illustration of tree search algorithm for a tree of 3 layers.

In the TSA algorithm, we start to construct a tree which has only the root

node with metric 0. Then in each iteration, the TSA always first finds the leaf

node with the smallest metric, which is called the seed node. Then the algorithm

expands the tree by adding the seed node’s ∣Ω∣ child nodes to the tree, and calculat-
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ing the metrics of all these child nodes. The tree search algorithm then iterates this

process of finding the seed node and expanding the tree, until the seed node is a

layer-1 node, corresponding to a full-length sequence. The flow of this algorithm is

described as below for constant-modulus constellations (for nonconstant-modulus

modulations we just need to replace Ms̃∗i∶T
by M̄s̃∗i∶T

).

Figure 3.1 shows 3 search iterations for QPSK constellation and T = 2. The

height of a node represents its metric. In (a), the root node 1 is selected as the seed

node, and expands into 4 child nodes. Then node 2 is chosen as the seed node, and

expands into 4 child nodes. The expansion of node 2 is shown in (b). The TSA then

finds node 5 as the next seed node. The third search iteration in (c) expands node

5 by adding its 4 children. The TSA algorithm then finds node 9 as the seed node

since it has the smallest metric. Since node 9 is a layer-2 node, the algorithm will

terminate and output node 9 as the GLRT-optimal solution.

3.6.1 Computational Complexity of TSA

In this section, we will show that the TSA algorithm is computationally

efficient in terms of the number of visited nodes.

Theorem 3.6.1. The TSA outputs the optimal sequence in joint channel estimation and

data detection. Let M be the metric of the optimal sequence, and let l be the number of

sequences (including partial sequences) that have metrics no bigger than M . Then the

number of visited points by TSA is no more than (∣Ω∣ + 1)l . Moreover, the TSA algorithm

visits no more tree nodes than Algorithm 2 in Section 3.2.
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Algorithm 3: Tree Search Algorithm (TSA).
Input:matrix R and constellation Ω
Output:The transmitted signal s∗

1. Add the root node, and set its metric to 0. Set r2 = 0;

2. (Find the seed node) Find the leaf node s̃∗i∶T which has the smallest metric
among all the leaf nodes. Select that leaf node as the seed node. Update
r2 =Ms̃∗i∶T

;

3. If the seed node s̃∗i∶T is layer-1 node, namely i = 1, then go to 4; else, add the
∣Ω∣ child nodes of s̃∗i∶T to the tree, compute the metrics of these child nodes,
and go to 2;

4. Terminate the algorithm, output s̃∗1∶T as the optimal sequence. Output r2 as
the smallest possible metric.

Proof. We first notice that every full-length sequence s̃∗1∶T is a direct or indirect child

of a leaf node s̃∗i∶T existing at the termination of the TSA. However, by the TSA, the

metric Ms̃∗i∶T
must be no smaller than the final r2. Since Ms̃∗i∶T

is a lower bound of

Ms̃∗1∶T
, we have Ms̃∗1∶T

≥ r2 at the termination of the TSA. This proves that the TSA

indeed outputs the optimal sequence, and r2 =M at its termination.

According to its procedure, the TSA algorithm will not visit the child nodes

of any node B which has a metric bigger than M , namely node B will not be

selected as a seed node in the tree search. In fact, the TSA will add the full-length

optimal sequence and all its (direct or indirect) parent nodes to the tree (because a

parent node’s metric is always no bigger than its child node’s) first; and then the

TSA will declare the full-length optimal sequence as the final solution, terminating

before node B is ever selected as a seed node. So the TSA algorithm can only visit
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Figure 3.2: SER vs SNR for the GLRT-optimal joint channel estimation and data detection,
iterative and non-iterative LS channel estimation with T = 8 and QPSK modulation.

tree nodes which have metric no bigger than M , and possibly their direct child

nodes. This gives an upper bound of (∣Ω∣ + 1)l on the total number of visited tree

nodes.

To find the optimal sequence, Algorithm 2 must have used a radius r such

that r2 ≥M . Thus Algorithm 2 will visit every tree node with metric no bigger than

M , and its child nodes. So the number of visited nodes by Algorithm 2 must be no

smaller than that of the TSA. Thus, the TSA will also visit a polynomial number of

nodes on average, as N →∞.

3.7 Simulation Results

In this section, we simulate the performance and complexity of the exact

GLRT-optimal algorithm for SIMO systems with N receive antennas, under QPSK
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Figure 3.3: SER vs SNR for the GLRT-optimal joint channel estimation and data detection,
iterative and non-iterative LS channel estimation with T = 20 and QPSK modulation.

and nonconstant-modulus 16-QAM. Channel matrix entries are generated as i.i.d

complex Gaussian random variables. We investigate the performance of the GLRT-

optimal algorithm for N= 10, 50, 100, and 500 receive antennas. We compare the

performance of the GLRT-optimal JED algorithm with sub-optimal iterative and

non-iterative JED schemes. We use least square (LS) and minimum mean square

error (MMSE) channel estimation for the iterative and non-iterative JED (the reader

may refer to [62] for the LS and MMSE channel estimation).

In each channel coherent block, we embed one symbol which is known by

the receiver to resolve channel phase ambiguity at the end of the data sequence.

In the non-iterative channel estimation scheme, the receiver estimates the channel

vector using this training symbol. Then, the receiver uses this estimated channel

vector to detect the remaining T −1 transmitted symbols. The iterative sub-optimal
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Figure 3.4: SER vs SNR for GLRT-optimal joint channel estimation and data detection,
iterative and non-iterative MMSE channel estimation with T = 8 and QPSK modulation.
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Figure 3.5: SER vs SNR for GLRT-optimal joint channel estimation and data detection,
iterative and non-iterative MMSE channel estimation with T = 20 and QPSK modulation.
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Figure 3.6: Average number of visited points for T = 20 and QPSK modulation. Exhaustive
search will instead need to examine 2.75 × 1011 hypotheses.

scheme exploits the detected data vector from the pervious iteration to obtain a

new channel estimation, which, in turn, is used for data detection in the current

iteration. The iterative joint channel estimation and data detection scheme runs

100 iterations for each channel coherence block.

In Figures 3.2, 3.3, 3.4, and 3.5, under the QPSK modulation, the symbol

error rate (SER) of the GLRT-optimal JED algorithm is evaluated as a function of

SNR for T = 8 and 20 respectively, along with the SER of data detection based on

the iterative and non-iterative LS and MMSE channel estimations. It can be seen

that the GLRT-optimal algorithm outperforms the LS and MMSE iterative and non-

iterative channel estimation schemes. For example, from Figures 3.2 and 3.4, we

see more than 2 dB improvement over the iterative channel estimation and data

detection, and 3 dB improvement over the non-iterative channel estimation and
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Figure 3.7: SER vs SNR, for the GLRT-optimal joint channel estimation and data detection
and iterative MMSE channel estimation with T = 12 and 16-QAM.

data detection for N=100, at 10−2 SER. In Figures 3.3 and 3.5, the GLRT-optimal

JED provides a performance improvement of 2 dB over the iterative scheme and

4.5 dB improvement over the non-iterative scheme, at 10−2 SER.

We further evaluate the complexities of both Algorithm 2 and the TSA for

QPSK constellation by the average number of visited nodes in each coherence

block. In Figure 3.6, we obtain the average number of visited nodes for T=20 at

different SNR values. We use our proposed search radius r2 = 1
3 for Algorithm

1. It can be seen that when N increases, the number of visited nodes significantly

decreases. In fact, the average number of visited nodes for N=500 is steady at 76,

namely the cardinality of the QPSK constellation multiplied by (T − 1) layers. This

is consistent with our theoretical prediction in Theorem 3.3.1. In addition, the TSA

further reduces the complexity. At SNR = −4 dB, our algorithms on average visit
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only around several hundred nodes for N = 50, and only 76 nodes for N = 500. In

comparison, the exhaustive search method will need to examine 419 ≈ 2.75×1011 hy-

potheses for each coherence block. Our algorithms achieve complexity reduction

in many orders of magnitude across a wide range of N .
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Figure 3.8: Average number of visited points, T=12 with 16-QAM. Exhaustive search will
instead need to examine 1.76 × 1013 hypotheses.

Figure 3.7 describes the performance of the GLRT-optimal JED for the nonconstant-

modulus 16-QAM constellation. We choose the the coherent time T = 12, and

N = 50,100 and 500. We can see that our novel GLRT-optimal algorithms provide

nearly 5 dB gain over iterative joint MMSE channel estimation and data detection

algorithms. Under 16-QAM, Figure 3.8 presents the average number of visited

nodes, under different SNR values, for Algorithm 2 with r2 = 2
45 and for the TSA.



www.manaraa.com

108

The average is taken over 103 channel coherence blocks. Both algorithms achieve

surprisingly low average computational complexity. Note that, in order to do ex-

haustive search, one would need to examine 1611=1.76 × 1013 hypotheses in each

coherence block. For SNR above −4 dB, on average the TSA visits only 176 nodes,

a 1011-fold reduction in complexity compared with exhaustive search.

3.8 Appendix

3.8.1 Proof of Lemma 3.2.1

Proof. Because

∥s∥2 = ∥s1∶i−1∥2 + ∥si∶T ∥2

≤ ∣smax∣2(i − 1) + ∥si∶T ∥2,

we have
Ms∗

i∶T

∥s∥2 ≥ M̄s∗i∶T
. Thus

∥Rs∥2

∥s∥2
=
∑Tj=1 ∣∑Tk=j Rj,ksk∣2

∥s∥2

=
∑i−1
j=1 ∣∑Tk=j Rj,ksk∣2 +∑Tj=i ∣∑Tk=j Rj,ksk∣2

∥s∥2

≥
Ms∗i∶T

∥s∥2

≥ M̄s∗i∶T
.
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3.8.2 Proof of Lemma 3.3.2

Proof. Now we use induction over row index i, to show that

R̀i,i =
√

T (T − i)
T − i + 1

and for every j > i,

R̀i,j = −sis
∗
j

√
T

(T − i + 1)(T − i)
.

When i = 1, we have R̀1,1 =
√

À1,1 =
√
T − 1 =

√
T (T−1)
T−1+1 . For every j > 1, we have

R̀1,j =
À1,j

R̀1,1

=
−s1s∗j√
T − 1

= −s1s
∗
j

√
T

(T − 1 + 1)(T − 1)
.

Thus the conclusion of this lemma is true for index i = 1.

Suppose the conclusion of this lemma is true for any index i such that

i ≤ k < T , where k is an integer. Then let us consider i = k + 1. Because R̀i,i =
√

Ài,i −∑i−1
t=1 R̀t,iR̀∗

t,i, we have

R̀2
k+1,k+1 = (T − 1) −

k

∑
t=1

[−sts
∗
k+1

√
T

(T − t + 1)(T − t)
×−s∗t sk+1

√
T

(T − t + 1)(T − t)
]

= (T − 1) −
k

∑
t=1

T

(T − t + 1)(T − t)
= T − 1 − ( T

T − k
− 1)

= T (T − k − 1)
T − k

.

where the last two equalities are due to Lemma 3.8.1. Moreover, for j > k + 1,
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R̀k+1,j =
Àk+1,j − (∑kt=1 R̀t,k+1R̀∗

t,j)∗

R̀k+1,k+1

= (−sk+1s
∗
j −

k

∑
t=1

[(−s∗t sk+1)
√

T

(T − t + 1)(T − t)

× (−sts
∗
j )

√
T

(T − t + 1)(T − t)
]) /R̀k+1,k+1

=
(−sk+1s∗j )[1 +∑

k
t=1

T
(T−t+1)(T−t)]

R̀k+1,k+1

= −sk+1s
∗
j ×

T
T−k√

T (T−k−1)
T−k

= −sk+1s
∗
j

√
T

(T − k)(T − k − 1)

= −sk+1s
∗
j

√
T

(T − (k + 1) + 1)(T − (k + 1))
.

Thus we show that the formulas for R̀i,i and R̀i,j , j > i are also true for i = k + 1.

3.8.3 Lemma 3.8.1 and Its Proof

Lemma 3.8.1.
k

∑
j=1

T

(T − j + 1)(T − j)
= T

T − k
− 1

Proof.

k

∑
j=1

T

(T − j + 1)(T − j)
=

k

∑
j=1

( j

T − j
− j − 1

T − (j − 1)
)

= k

T − k
= T

T − k
− 1 (3.30)
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3.8.4 Derivation of var[(X∗X)i,j/N] in (3.21)

Proof.

var[(X∗X)i,j] = var[
N

∑
k=1

Bk] =
N

∑
k=1

var(Bk)

=
N

∑
k=1

(E[BkB
∗
k ] −E[Bk]E[B∗

k ])

where Bk = (s∗i hk +wk,i)∗(s∗jhk +wk,j), and we use wi,j to denote the element in the

i-th row and j-th column of W. After expansion, we have

E[BkB
∗
k ] =

sis
∗
j s

∗
i sj

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
=1

h∗
khkh

∗
khk + sis

∗
jh

∗
khkw

∗
k,jwk,i + sis

∗
j s

∗
i h

∗
khkhkw

∗
k,j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ sis
∗
j sjh

∗
khkwk,ih

∗
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ sjs
∗
i w

∗
k,iwk,jh

∗
khk +w∗

k,iwk,jw
∗
k,jwk,i + s∗i w

∗
k,iwk,jhkw

∗
k,j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ sjw
∗
k,iwk,jwk,ih

∗
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ sisjs
∗
i h

∗
kwk,jh

∗
khk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ sih
∗
kwk,jw

∗
k,jwk,i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ sis
∗
i

°
=1

h∗
kwk,jhkw

∗
k,j + sisjh

∗
kwk,jwk,ih

∗
k

+ s∗j sjs
∗
i w

∗
k,ihkh

∗
khk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ s∗jw
∗
k,ihkw

∗
k,jwk,i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ s∗j s
∗
i w

∗
k,ihkhkw

∗
k,j + s∗j sj

±
=1

w∗
k,ihkwk,ih

∗
k

Since we already assume that the entries of h are rotationally-invariant complex

Gaussian with unit variance, then we can write hk as a + b
√
−1, where a and b

are independent, and both follow Gaussian distribution N(0, 1
2). Thus E[h2

k] =
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E[(h∗
k)2] = 0. Furthermore,

E[∣hk∣4] = E[(a2 + b2)2] = E[a4 + b4 + 2a2b2]

= 3σ4
a + 3σ4

b + 2σ2
aσ

2
b

= 2 × 3 × (1

2
)2 + 2

4
= 2, (3.31)

where σ2
a = 1

2 and σ2
b =

1
2 are respectively the variance of a and b. In the same way,

we can find E[∣w∣4] = 2σ4
w. Thus, when i ≠ j,

E[BkB
∗
k ] = E[∣hk∣4] +E[∣wk,i∣2]E[∣wk,j ∣2]

+E[∣hk∣2]E[∣wk,i∣2] +E[∣hk∣2]E[∣wk,j ∣2]

= 2 + σ4
w + 2σ2

w. (3.32)

When i = j,

E[BkB
∗
k ] = E[∣hk∣4]

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=2

+E[∣wk,i∣4]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=2σ4
w

+E[∣hk∣2]E[∣wk,i∣2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=σ2
w

+E[∣hk∣2]E[∣wk,i∣2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=σ2
w

+E[∣hk∣2]E[∣wk,i∣2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=σ2
w

+s2
i E[(h∗

k)2]E[(wk,i)2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+ (s2
i )∗E[(hk)2]E[(w∗

k,i)2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+E[∣hk∣2]E[∣wk,i∣2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=σ2
w

= 2 + 2σ4
w + 4σ2

w. (3.33)



www.manaraa.com

113

Moreover, after some algebra,

E[Bk]E[B∗
k ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 + 2σ2
w + σ4

w, if i = j

sis∗j sjs
∗
i = 1, otherwise.

Finally,

var(Bk) = E[BkB
∗
k ] −E[Bk]E[B∗

k ]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 + 2σ2
w + σ4

w, if i = j

1 + 2σ2
w + σ4

w, otherwise

(3.34)

This leads to

var(
(X∗X)i,j

N
) = (1 + 2σ2

w + σ4
w)/N. (3.35)

3.8.5 Proof of Lemma 3.4.2

Proof. For any i, s∗i hj + wj,i, 1 ≤ j ≤ N , are N independent rotationally-invariant

complex Gaussian random variables with variance 1 + σ2
w. Thus (X∗X)i,i

N is twice

the empirical average energy of 2N independent real-numbered Gaussian random

variables each following distribution N(0, 1+σ2
w

2 ).

We first look at the concentration of the empirical average energy of 2N real-

numbered Gaussian random variables xi, 1 ≤ i ≤ 2N , each following distribution

N(0,1). For any ε > 0, we apply the Chernoff bound to bound P (∑
2N
i=1 x

2
i

N − 2 < −ε):
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P (∑
2N
i=1 x

2
i

N
− 2 < −ε)

≤ E{eλ(−Nε+2N−∑2N
i=1 x

2
i )}

≤ eλ(−Nε+2N)E{[e−λx2]2N}

= eλ(−Nε+2N)
⎡⎢⎢⎢⎢⎣
∫

∞

−∞
e−λx

2 e−
x2

2

√
2π

dx

⎤⎥⎥⎥⎥⎦

2N

= eλ(−Nε+2N) [ 1√
2π
∫

∞

−∞
e−(λ+

1
2
)x2

dx]
2N

= (
√

1

1 + 2λ
)2Neλ(−Nε+2N) [ 1√

2π
∫

∞

−∞
e−

x′2

2 dx′]
2N

= eλ(−Nε+2N)( 1√
1 + 2λ

)2N

Taking the logarithm on both sides, we have

log(P (∑
2N
i=1 x

2
i

N
− 2 < ε)) ≤ N[λ(−ε + 2) − log (1 + 2λ)]. (3.36)

Take the derivative with respect to λ, and set the derivative to 0, we obtain the

minimizing λ as λ = ε
2(2−ε) . Substitute this λ in (3.36), we obtain that

1

N
log(P (∑

2N
i=1 x

2
i

N
− 2 < −ε)) ≤ ε

2
− log(1 + ε

2 − ε
)

By a proper linear scaling of 1+σ2
w

2 , we have
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− 1

N
log(P (

(X∗X)i,i
N

− (1 + σ2
w) < −ε))

≥ − ε

1 + σ2
w

+ log(1 + ε

(1 + σ2
w) − ε

)

Using the Taylor series, we have

log(1 + ε

(1 + σ2
w) − ε

) =
+∞
∑
k=1

εk

k(1 + σ2
w)k

.

Thus

− 1

N
log(P (

(X∗X)i,i
N

− (1 + σ2
w) < −ε)) ≥ ε2

2(1 + σ2
w)2

.

To bound P ( (X∗X)i,i
N −(1+σ2

w) > +ε), we similarly apply the Chernoff bound

to characterize the concentration of twice the empirical average energy of 2N real-

numbered Gaussian random variables each following distribution N(0,1).

P (∑
2N
i=1 x

2
i

N
− 2 > ε)

≤ E{eλ(−Nε−2N+∑2N
i=1 x

2
i )}

= e−λ(Nε+2N)E{[e−λx2]2N}

= e−λ(Nε+2N)( 1√
1 − 2λ

)2N

We obtain λ minimizing e−λ(Nε+2N)( 1√
1−2λ

)2N as λ = ε
2(2+ε) . Thus we can bound
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− 1

N
log(P (

(X∗X)i,i
N

− (1 + σ2
w) > ε))

≥ ε

1 + σ2
w

+ log(1 − ε

(1 + σ2
w) + ε

)

Using the Taylor series, we have

log(1 − ε

(1 + σ2
w) + ε

) =
+∞
∑
k=1

(−1)k εk

k(1 + σ2
w)k

.

Because
+∞
∑
k=2

(−1)k εk

k(1 + σ2
w)k

≥ ε2

2(1 + σ2
w)2

− ε3

3(1 + σ2
w)3

,

we have

− 1

N
log(P (

(X∗X)i,i
N

− (1 + σ2
w) > ε))

≥ ε2

2(1 + σ2
w)2

− ε3

3(1 + σ2
w)3

.

Moreover, if ε ≤ 1 + σ2
w, we have

− log(P (
(X∗X)i,i

N
− (1 + σ2

w) > +ε)) /N

≥ ε2

2(1 + σ2
w)2

− ε2

3(1 + σ2
w)2

= ε2

6(1 + σ2
w)2

.
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3.8.6 Proof of Lemma 3.4.3

Proof.

(X∗X)i,j = sis
∗
j

N

∑
l=1

(h∗
l + s−1

i w∗
i,l)(hl + (s∗j )−1wj,l) = sis

∗
j

N

∑
l=1

(h∗
l + w̌∗

i,l)(hl + w̌j,l),

where w̌’s have the same distribution as w’s. For each l, let hl = al+τbl, w̌i,l = cl+τdl,

and w̌j,l = el + τfl, where τ =
√
−1, al ∼ N(0,1/2), bl ∼ N(0,1/2), cl ∼ N(0, σ2

w/2),

dl ∼ N(0, σ2
w/2), el ∼ N(0, σ2

w/2), and fl ∼ N(0, σ2
w/2). Moreover, al’s, bl’s, cl’s, dl’s,

el’s and fl’s are jointly independent. Thus, for each l, we have

(h∗
l + w̌∗

i,l)(hl + w̌j,l) = (al − τbl + cl − τdl)(al + blτ + el + τfl)

= a2 + b2 + (cl − τdl)(al + τbl) + (el + τfl)(al − τbl) + (cl − τdl)(el + τfl)

= a2
l + b2

l + alcl + bldl + alel + flbl + clel + dlfl + τ(−aldl + blcl)

+ τ(alfl − blel) + τ(−dlel + clfl).

Using the triangle inequality, we have

∣
(X∗X)i,j

N
− sis

∗
j ∣

≤ 1

N
(∣

N

∑
l=1

(a2
l + b2

l − 1)∣ + ∣
N

∑
l=1

alcl∣ + ∣
N

∑
l=1

bldl∣ + ∣
N

∑
l=1

alel∣

+ ∣
N

∑
l=1

blfl∣ + ∣
N

∑
l=1

aldl∣ + ∣
N

∑
l=1

alfl∣ + ∣
N

∑
l=1

blcl∣

+∣
N

∑
l=1

blel∣ + ∣
N

∑
l=1

clel∣ + ∣
N

∑
l=1

dlfl∣ + ∣
N

∑
l=1

dlel∣ + ∣
N

∑
l=1

clfl∣)
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By the union bound, for any ε > 0, we have

P (∣
(X∗X)i,j

N
− sis

∗
j ∣ > ε)

≤ P (∣∑
N
l=1(a2

l + b2
l − 1)

N
∣ > ε/13) + P (∣∑

N
l=1 alcl
N

∣ > ε/13)

+ P ( ∣∑
N
l=1 bldl∣
N

> ε/13) + P ( ∣∑
N
l=1 alel∣
N

> ε/13)

+ P ( ∣∑
N
l=1 blfl∣
N

> ε/13) +⋯

+ P ( ∣∑
N
l=1 clfl∣
N

> ε/13).

In the inequality above, there is 1 term P ( ∣∑Nl=1(a2
l +b2l −1)∣
N > ε/13), 8 terms with the

same value as P ( ∣∑Nl=1 alcl∣
N > ε/13), and 4 terms with the same value as P ( ∣∑Nl=1 clfl∣

N >

ε/13). Thus, we can further have

P (∣
(X∗X)i,j

N
− sis

∗
j ∣ > ε)

≤ P (∑
N
l=1 ∣a2

l + b2
l − 1∣

N
> ε/13) + 8P (∑

N
l=1 ∣alcl∣
N

> ε/13)

+ 4P (∑
N
l=1 ∣clfl∣
N

> ε/13).

Using the results from Lemma 3.4.2, after proper scaling (taking σw = 0), we have

P (
∣∑Nl=1 a

2
l + b2

l − 1∣
N

> ε/13) ≤ P (∑
N
l=1(a2

l + b2
l − 1)

N
> ε/13)

+ P (∑
N
l=1(a2

l + b2
l − 1)

N
< −ε/13)

≤ e−N[− ε
13
+log(1+ ε

13−ε
)] + e−N[ ε

13
+log(1− ε

13+ε
)]

≤ e−Nε
2

338 + e−Nε
2

1014 ,
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where ε ≤ 13. For the concentration of the average of alcl, we have the following

lemma, whose proof is presented in Appendix 3.8.7.

Lemma 3.8.2. Suppose that ul and vl, 1 ≤ l ≤ N , are 2N independent standard Gaussian

random variables following distribution N(0,1). Then

− log(P (∣∑Nl=1 ulvl∣
N

> ε)) /N

≥ −1 +
√

1 + 4ε2

2
+ 1

2
log(1 − [−1 +

√
1 + 4ε2

2ε
]2).

This quantity is no smaller than 1
2ε

2 when ε ≤
√

2.

Using Lemma 3.8.2, by proper scaling, we have

P ( ∣∑
N
l=1 alcl∣
N

> ε/13) ≤ e−N[−1+
√

1+4ε′2

2
+ 1

2
log(1−[−1+

√

1+4ε′2

2ε
]2)]

where ε′ = 2ε
13σw

. Moreover, when ε ≤ 13σw√
2

,

P ( ∣∑
N
l=1 alcl∣
N

> ε/13) ≤ e−
Nε2

169σ2
w .

Similarly, we have

P ( ∣∑
N
l=1 clfl∣
N

> ε/13) ≤ e−N[−1+
√

1+4ε′′2

2
+ 1

2
log(1−[−1+

√

1+4ε′′2

2ε
]2)]
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where ε′′ = 2ε
13σ2

w
. Moreover, when ε ≤ 13σ2

w√
2

,

P ( ∣∑
N
l=1 clfl∣
N

> ε/13) ≤ e−
Nε2

169σ4
w .

3.8.7 Proof of Lemma 3.8.2

Proof. Let us assume xl and yl, 1 ≤ l ≤ N , are 2N jointly independent random

variables following distribution N(0,1). Then by the Chernoff bound, for λ ≥ 0,

we obtain

P (∑
N
i xiyi
N

> ε) = P (
N

∑
i

xiyi > Nε)

≤ E{eλ(∑Ni xiyi−Nε)}

= ( 1√
2π

)2Ne−λNε[∫
∞

−∞
∫

∞

−∞
e
−1
2
(x2+y2−2λxy) dxdy]N

= ( 1√
2π

)2Ne−λNε[∫
∞

−∞
∫

∞

−∞
e
−1
2
[x y ][1 −λ

−λ 1
][xy ] dxdy]N

= ( 1√
2π

)2Ne−λNε[∫
∞

−∞
∫

∞

−∞
e
−1
2
(A[xy ])∗(A[xy ]) dxdy]N

= ( 1√
2π

)2Ne−λNε[∫
∞

−∞
∫

∞

−∞
e
−1
2
[x′ y′ ][x

′

y′
]
dx′dy′

1

det(A)
]N

= ( 1√
2π

)2Ne−λNε[
√

2π
√

2π × 1

det(A)
]N

= e−λNε × [ 1√
1 − λ2

]N .
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where [ 1 −λ
−λ 1 ] = A∗A, [x′ y′]T = A[ xy ], and ∫

∞
−∞ e

−x2

2 dx =
√

2π. By taking the logarithm

of e−λNε × [ 1√
1−λ2

]N , we have

−λNε − N
2

log(1 − λ2). (3.37)

To minimize (3.37), we take its derivative with respect to λ, and set the derivative

to 0 to get ελ2 + λ − ε = 0. Since λ ≥ 0, we have

λ = −1 +
√

1 + 4ε2

2ε

Thus this leads to

− log(P (∣∑Nl=1 ulvl∣
N

> ε)) /N

≥ −1 +
√

1 + 4ε2

2
+ 1

2
log(1 − [−1 +

√
1 + 4ε2

2ε
]2)

≐ f(ε).

We note that f(0) = 0 and the derivative f ′(ε) = 2ε
√

1+4ε2

1+4ε2+
√

1+4ε2
. For ε ≤

√
2,

f ′(ε) ≥ ε
2 . This implies that

f(ε) ≥ 1

4
ε2

when ε ≤
√

2.
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3.8.8 Proof of Lemma 3.4.4

Proof. By the triangle inequality for the maximum eigenvalue, we have

∣ρ − ρE ∣ ≤ max
∥v∥2≤1

∥(X∗X/N −E{X∗X}/N)v∥2

= max
∥v∥2≤1

√
(E1,∶v)2 + (E2,∶v)2 +⋯ + (ET,∶v)2

≤ max
∥v∥2≤1

√
∥E1,∶∥2

2∥v∥2 +⋯ + ∥ET,∶∥2
2∥v∥2

=
√
Tε2 +⋯ + Tε2

= Tε,

where Ei,∶, 1 ≤ i ≤ T , denotes the i-th row of (X∗X/N −E{X∗X}/N), and ∥Ei,∶∥2
2 ≤

Tε.

In addition, by the triangle inequality for absolute value, each entry of ρI −

X∗X/N deviates from its counterpart in ρEI −E{X∗X}/N by at most ε + Tε = (T +

1)ε.

3.8.9 Proof of Lemma 3.4.5

Proof. Our proof relies on a recursive perturbation analysis of the recursive calcu-

lations of the Cholesky decomposition of A.

Let us use k to denote the iteration number of the Cholesky decomposition,

where 1 ≤ k ≤ T , and we start with k = 1. In the k-th iteration, 1 ≤ k ≤ T , we have a

new matrix Ak ∈ C(T−k+1)×(T−k+1), and, to be consistent with the index in matrix A,

we use Ak
i,j to denote the element of Ak in its (i − k + 1)-th row and (j − k + 1)-th
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column. Moreover, we define A1 = A.

In the k-th iteration, we first compute Rk,k =
√

Ak
k,k. Then we calculate

Rk,(k+1)∶T = Ak
k,(k+1)∶T /Rk,k, where Rk,(k+1)∶T denotes the submatrix of R with row

index k and column indices k+1, k+2, ..., and T . After this, we update matrix Ak+1

as

Ak+1 = Ak
(k+1)∶T,(k+1)∶T −R∗

k,(k+1)∶T ×Rk,(k+1)∶T , (3.38)

where the column-vector R∗
k,(k+1)∶T = (Rk,(k+1)∶T )∗ denotes the conjugate transpose

of the row-vector Rk,(k+1)∶T .

When we calculate the Cholesky decomposition for À, we denote the counterparts

in the calculations as À
k
. From calculations in Section 3.3, we know that

À
k

k,k =
T (T − k)
T − k + 1

,

and, when i > k,

À
k

k,i = −(sks∗i )
T

T − k + 1
,

R̀k,i = −(sks∗i )
√

T

(T − k)(T − k + 1)
.

To bound the deviation of R from R̀, we thus need to bound the deviation of

matrices Ak from À
k

. Let us use Ek of dimension (T − k + 1) × (T − k + 1) to denote

the error matrix Ek = Ak − À
k
. To be consistent with the indices in matrix A, we use

Ek
i,j to denote the element in the (i − k + 1)-th row and (j − k + 1)-th column of Ek.
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Let us further use εk ≥ 0 to denote the maximum magnitude of all the elements in

Ek.

Our proof strategy of Lemma 3.4.5 is to bound εk by induction over k. In

fact, we will show that, for any k,

∣εk+1∣ ≤ ∣εk∣
(T − k + 1)2

(T − k)2
(1 + ∣εk∣

À
k

k,k − ∣εk∣
). (3.39)

(The proof of this fact will proceed until (3.48).) The relation (3.39) will lead us to

conclude that ∣εk∣ ≤ ∣ε1∣ T 2

(T−(k−1))2 e4 < 1 holds true for every 1 ≤ k ≤ T , when ∣ε1∣ < 1
e4T 2 .

To bound εk by induction, we start with ε1 ≤ ε < 1

e4T2 . Suppose that we know

εk for a certain k, and we will derive the relation between εk and εk+1. Because

Ek+1 = Ek
k+1∶T,k+1∶T − (Ek

k+1∶T,k+1∶T −Ek+1),

in order to bound εk+1, we first investigate Ek
k+1∶T,k+1∶T −Ek+1. Using (3.38), we have

Ek
k+1∶T,k+1∶T −Ek+1

= (Ak
(k+1)∶T,(k+1)∶T − À

k

(k+1)∶T,(k+1)∶T ) − (Ak+1 − À
k+1

)

= (Ak
(k+1)∶T,(k+1)∶T −Ak+1) − (À

k

(k+1)∶T,(k+1)∶T − À
k+1

)

= R∗
k,(k+1)∶T ×Rk,(k+1)∶T − R̀∗

k,(k+1)∶T × R̀k,(k+1)∶T . (3.40)

By definition, Ak
k,k = À

k

k,k +Ek
k,k. Thus Rk,k =

√
À
k

k,k +Ek
k,k, and R̀k,k =

√
À
k

k,k.

Furthermore, we have Ak
k,i = À

k

k,i + Ek
k,i. Then Rk,i =

À
k
k,i+Ekk,i
Rk,k

, and Rk,j =
À
k
k,j+Ekk,j
Rk,k

.
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For the recursive calculations of the Cholesky decomposition in (3.38) and the evo-

lution of error matrix Ek in (3.40), we have

R∗
k,iRk,j = (

À
k

k,i

Rk,k

+
Ek
k,i

Rk,k

)∗(
À
k

k,j

Rk,k

+
Ek
k,j

Rk,k

)

=
(À

k

k,i)∗À
k

k,j

R2
k,k

+
(À

k

k,i)∗Ek
k,j

R2
k,k

+
À
k

k,j(Ek
k,i)∗

R2
k,k

+
(Ek

k,i)∗Ek
k,j

R2
k,k

(3.41)

Since R̀∗
k,iR̀k,j =

(À
k
k,i)∗À

k
k,j

Àk,k
, for any (i, j) pair such that (k + 1) ≤ i, j ≤ T , we have

(Ek
k+1∶T,k+1∶T −Ek+1)i,j

= R∗
k,iRk,j − R̀∗

k,iR̀k,j

=
(À

k

k,i)∗À
k

k,j

À
k

k,k +Ek
k,k

+
(À

k

k,i)∗Ek
k,j

À
k

k,k +Ek
k,k

+
À
k

k,j(Ek
k,i)∗

À
k

k,k +Ek
k,k

+
(Ek

k,i)∗Ek
k,j

À
k

k,k +Ek
k,k

−
(À

k

k,i)∗À
k

k,j

À
k

k,k

=
−(À

k

k,i)∗À
k

k,jE
k
k,k

À
k

k,k(À
k

k,k +Ek
k,k)

+
(À

k

k,i)∗Ek
k,j

À
k

k,k +Ek
k,k

+
À
k

k,j(Ek
k,i)∗

À
k

k,k +Ek
k,k

+
(Ek

k,i)∗Ek
k,j

À
k

k,k +Ek
k,k

(3.42)

To bound the elements of Ek+1, we divide each element of Ek
k+1∶T,k+1∶T −Ek+1

to two parts: The first-order approximation and the higher-order terms. Namely,

Ek
k+1∶T,k+1∶T −Ek+1 = Bk+1,1st +Bk+1,high.

More specifically, the first-order (T − k) × (T − k) approximation matrix Bk+1,1st for
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(Ek
k+1∶T,k+1∶T −Ek+1) has in its (i − k)-th row and (j − k)-th column:

(Bk+1,1st)i,j =
−(À

k

k,i)∗À
k

k,jE
k
k,k

(À
k

k,k)2
+

(À
k

k,i)∗Ek
k,j

À
k

k,k

+
À
k

k,j(Ek
k,i)∗

À
k

k,k

. (3.43)

The higher-order term matrix for Ek
k+1∶T,k+1∶T−Ek+1 is thus given by Bk+1,high =

Ek
k+1∶T,k+1∶T −Ek+1 −Bk+1,1st. Moreover,

(Bk+1,high)i,j

= (Ek
k+1∶T,k+1∶T −Ek+1 −Bk+1,1st)i,j

=
⎛
⎜
⎝

−(À
k

k,i)∗À
k

k,jE
k
k,k

À
k

k,k(À
k

k,k +Ek
k,k)

+
(À

k

k,i)∗À
k

k,jE
k
k,k

(À
k

k,k)2

⎞
⎟
⎠

+
⎛
⎜
⎝

(À
k

k,i)∗Ek
k,j

À
k

k,k +Ek
k,k

−
(À

k

k,i)∗Ek
k,j

À
k

k,k

⎞
⎟
⎠

+
⎛
⎜
⎝

À
k

k,j(Ek
k,i)∗

À
k

k,k +Ek
k,k

−
À
k

k,j(Ek
k,i)∗

À
k

k,k

⎞
⎟
⎠
+

(Ek
k,i)∗Ek

k,j

À
k

k,k +Ek
k,k

=
(À

k

k,i)∗À
k

k,j(Ek
k,k)2

A2
k,k(À

k

k,k +Ek
k,k)

−
(À

k

k,i)∗Ek
k,jE

k
k,k

À
k

k,k(À
k

k,k +Ek
k,k)

−
À
k

k,j(Ek
k,i)∗Ek

k,k

À
k

k,k(À
k

k,k +Ek
k,k)

+
(Ek

k,i)∗Ek
k,j

À
k

k,k +Ek
k,k

. (3.44)

By the triangle inequality, we can upper bound each entry of Ek+1. More specifi-

cally, for all the i’s and j’s such that k + 1 ≤ i ≤ T and k + 1 ≤ j ≤ T , we have
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∣Ek+1
i,j ∣

= ∣(Ek
i,j −Ek+1

i,j ) −Ek
i,j ∣

= ∣(Bk+1,1st
i,j +Bk+1,high

i,j ) −Ek
i,j)∣

= ∣ (Bk+1,1st
i,j + (Ek

i,j −Ek+1
i,j −Bk+1,1st

i,j )) −Ek
i,j ∣

≤ ∣Ek
i,j ∣ + ∣Bk+1,1st

i,j ∣ + ∣Ek
i,j −Ek+1

i,j −Bk+1,1st
i,j ∣. (3.45)

Recall that Ek is the error matrix in the k-th iteration. Using (3.43), we can

upper bound ∣Ek
i,j ∣ + ∣Bk+1,1st

i,j ∣ as follows:

∣Ek
i,j ∣ + ∣Bk+1,1st

i,j ∣

≤ ∣εk∣ +
( T
T−k+1)2∣Ek

k,k∣

∣À
k

k,k∣2
+

T
T−k+1 ∣Ek

k,j ∣

∣À
k

k,k∣
+

T
T−k+1 ∣(Ek

k,i)∗∣

∣À
k

k,k∣

≤ ∣εk∣ +
( T
T−k+1)2∣εk∣

∣À
k

k,k∣2
+

2 T
T−k+1 ∣εk∣

∣À
k

k,k∣

= ∣εk∣
∣À

k

k,k∣2 + 2 T
T−k+1 ∣À

k

k,k∣ + ( T
T−k+1)2

∣À
k

k,k∣2

= ∣εk∣
(∣À

k

k,k∣ + T
T−k+1)2

∣À
k

k,k∣2

= ∣εk∣
(T − k + 1)2

(T − k)2
, (3.46)

where we used the fact that each element of Ek is upper bounded by εk in magni-

tude and À
k

k,k =
T (T−k)
T−k+1 .
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Moreover, using (3.44) and the triangular inequality, we can bound the mag-

nitude of each entry of the higher-order residual Ek
i,j −Ek+1

i,j −Bk+1,1st
i,j as follows:

∣Ek
i,j −Ek+1

i,j −Bk+1,1st
i,j ∣

≤
( T
T−k+1)2∣εk∣2

(À
k

k,k)2(À
k

k,k − ∣εk∣)
+

T
T−k+1 ∣εk∣2

À
k

k,k(À
k

k,k − ∣εk∣)

+
T

T−k+1 ∣εk∣2

À
k

k,k(À
k

k,k − ∣εk∣)
+ ∣εk∣2

À
k

k,k − ∣εk∣

= ∣εk∣2

(À
k

k,k − ∣εk∣)
[ 1

(T − k)2
+ 2

(T − k)
+ 1]

= ∣εk∣2

(À
k

k,k − ∣εk∣)

(T − k + 1)2

(T − k)2
(3.47)

Combining (3.45), (3.46) and (3.47), we can bound the magnitude of each

element in Ek+1. More specifically,

∣Ek+1
i,j ∣ ≤ ∣εk∣

(T − k + 1)2

(T − k)2
+ ∣εk∣2

À
k

k,k − ∣εk∣

(T − k + 1)2

(T − k)2

= ∣εk∣
(T − k + 1)2

(T − k)2
(1 + ∣εk∣

À
k

k,k − ∣εk∣
)

holds true for i and j such that k + 1 ≤ i ≤ T and k + 1 ≤ j ≤ T . This means

∣εk+1∣ ≤ ∣εk∣
(T − k + 1)2

(T − k)2
(1 + ∣εk∣

À
k

k,k − ∣εk∣
). (3.48)

We claim that, if T ≥ 4 and ∣ε1∣T 2e4 < 1, then ∣εk∣ ≤ ∣ε1∣ T 2

(T−(k−1))2 e4 holds true

for every 1 ≤ k ≤ T . To see this, we also perform an induction on k, based on (3.48).
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For k = 1, ∣ε1∣ ≤ ∣ε1∣e4 is true because e4 ≥ 1. Suppose ∣εi∣ ≤ ∣ε1∣ T 2

(T−(i−1))2 e4 holds

true for 1 ≤ i ≤ k, where k is an integer such that 1 ≤ k ≤ T − 1. For any i such that

1 ≤ i ≤ k, because ∣εi∣ ≤ ∣ε1∣ T 2

(T−(i−1))2 e4 ≤ ∣ε1∣T 2e4 < 1, and T ≥ 4, we have ∣εi∣ < 1 ≤ T
4 .

Thus for any i such that 1 ≤ i ≤ k, by (3.48), we have

∣εi+1∣ ≤ ∣εi∣
(T − i + 1)2

(T − i)2
(1 + ∣εi∣

À
i

i,i − ∣εi∣
)

≤ ∣εi∣
(T − i + 1)2

(T − i)2
(1 + 1

T /4
), (3.49)

because À
i

i,i is no smaller than T /2 when i ≤ T − 1.

By applying (3.49) recursively for ∣εk+1∣, ∣εk∣, ..., and ∣ε1∣, we have

∣εk+1∣ ≤ ∣ε1∣
T 2

(T − k)2
(1 + 1

T /4
)k

≤ ∣ε1∣
T 2

(T − k)2
(1 + 1

T /4
)T

≤ ∣ε1∣
T 2

(T − k)2
e4,

because k ≤ T − 1 and (1 + 4
T )T ≤ e4. By this induction, we have proved that ∣εk∣ ≤

∣ε1∣ T 2

(T−(k−1))2 e4 < 1 holds true for every 1 ≤ k ≤ T , when ∣ε1∣ < e−4

T 2 .

Suppose that each element of Ek is upper bounded by ∣εk∣ in magnitude.

Then the deviation of Rk,k is upper bounded as follows:



www.manaraa.com

130

∣Rk,k − R̀k,k∣ = ∣
√

À
k

k,k +Ek
k,k −

√
À
k

k,k∣

= ∣
Ek
k,k√

À
k

k,k +Ek
k,k +

√
À
k

k,k

∣

≤ ∣εk∣√
À
k

k,k

= ∣εk∣
√

T − k + 1

T (T − k)

≤ ∣ε∣e4

√
T 3

(T − k + 1)3(T − k)

≤ ∣ε∣e4

√
T 3

8
, (3.50)

where we have used ∣εk∣ ≤ ∣ε1∣ T 2

(T−k+1)2 e4 < 1 ≤ T
4 , ε1 ≤ ε, and k ≤ T − 1 in the last two

steps. Furthermore, we can bound the deviation in Rk,j , where j > k, as follows:

∣Rk,j − R̀k,j ∣ = ∣
À
k

k,j +Ek
k,j√

À
k

k,k +Ek
k,k

−
À
k

k,j√
À
k

k,k

∣

≤ ∣
À
k

k,j√
À
k

k,k +Ek
k,k

−
À
k

k,j√
À
k

k,k

∣ + ∣
Ek
k,j√

À
k

k,j +Ek
k,k

∣

≤
∣À

k

k,j ∣∣εk∣√
À
k

k,k

√
À
k

k,k − ∣εk∣(
√

À
k

k,k − ∣εk∣ +
√

À
k

k,k)
+ ∣εk∣√

À
k

k,k − ∣εk∣

≤
∣À

k

k,j ∣∣εk∣

2(
√

À
k

k,k − ∣εk∣)3

+ ∣εk∣√
À
k

k,k − ∣εk∣

≤ ∣εk∣
T

2(T − k + 1)(
√

T (T−k)
T−k+1 − ∣εk∣)3

+ ∣εk∣√
T (T−k)
T−k+1 − ∣εk∣

≤ 2∣εk∣√
T
+ 2∣εk∣√

T

≤ ∣ε∣e4T
√
T , (3.51)
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where we also used ∣εk∣ ≤ ∣ε1∣ T 2

(T−k+1)2 e4 < 1 ≤ T
4 and k ≤ T − 1 in the last three steps.

Moreover, for k = T , we have

∣RT,T − R̀T,T ∣ = RT,T ≤ Te2
√

∣ε∣,

where we applied ∣εk∣ ≤ ∣ε1∣ T 2

(T−k+1)2 e4 to k = T . In summary, we have the results

stated in Lemma 3.4.5.

3.8.10 Proof of Lemma 3.4.6

Proof. For si∶T , we know the unscaled metric MR
s∗i∶T

= ∣∣Ri∶T,i∶T si∶T ∣∣2. First we will

upper bound
√
MR

s∗i∶T
:

∥Ri∶T,i∶T s∗i∶T ∥ = ∥(R̀i∶T,i∶T +Pi∶T,i∶T )s∗i∶T ∥

≤ ∣∣R̀i∶T,i∶T s∗i∶T ∣∣ + ∥Pi∶T,i∶T si∶T ∥

≤
√
M R̀

s∗i∶T
+ ∥Pi∶T,i∶T ∥F ∥si∶T ∥

≤
√
M R̀

s∗i∶T
+

¿
ÁÁÀ

T

∑
t=i

T

∑
j=i

∣Pt,j ∣2
√
T − i + 1, (3.52)

where M R̀
s∗i∶T

= ∥R̀i∶T si∶T ∥2. Similarly we can get the lower bound:

∥Ri∶T,i∶T s∗i∶T ∥ = ∥(R̀i∶T,i∶T +Pi∶T,i∶T )s∗i∶T ∥

≥ ∣∣R̀i∶T,i∶T s∗i∶T ∣∣ − ∥Pi∶T,i∶T si∶T ∥

≤
√
M R̀

s∗i∶T
−

¿
ÁÁÀ

T

∑
t=i

T

∑
j=i

∣Pt,j ∣2
√
T − i + 1. (3.53)



www.manaraa.com

132

3.8.11 Proof of Lemma 3.2.3 (and Lemma 3.3.3)

Proof. We first look at the metric of sequences under ρEI− E[X∗X]
N . For nonconstant-

modulus constellations, À = ρEI − E[X∗X]
N is given by

À =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t − s1s∗1 −s1s∗2 ⋯ −s1s∗T

−s2s∗1 t − s2s∗2 ⋯ −s2s∗T

⋮ ⋮ ⋱ ⋮

−sT s∗1 −sT s∗2 ⋯ t − sT s∗T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.54)

where t = ∑Ti=1 ∥s∗i ∥2.

As mentioned in the proof of Theorem 3.3.1, for a positive semidefinite

matrix À, one can calculate R̀ recursively by starting with i = 1. For each i,

R̀i,i =
√

Ài,i −∑i−1
k=1 R̀k,iR̀∗

k,i, where Ài,i is the i-th diagonal entry of (ρEI − E[X∗X]
N );

moreover, for each j > i, R̀i,j = 1

R̀i,i
(Ài,j −(∑i−1

k=1 R̀k,iR̀∗
k,j)∗), where Ài,j is an entry of

(ρEI − E[X∗X]
N ) with row index i, and column index j.

Using the recursive relation for calculating the Cholesky decomposition, af-

ter some algebra, we have obtained

R̀i,i =

¿
ÁÁÀt − ∣∣s∗i ∣∣2 −

i−1

∑
j=1

∣∣s∗j ∣∣2∣∣s∗i ∣∣2t
(t − ∣∣s∗1∶j−1∣∣2)(t − ∣∣s∗1∶j ∣∣2)

=

¿
ÁÁÀt − ∣∣s∗i ∣∣2 +

i−1

∑
j=1

[
∣∣s∗1∶j−1∣∣2∣∣s∗i ∣∣2

t − ∣∣s∗1∶j−1∣∣2
−

∣∣s∗1∶j ∣∣2∣∣s∗i ∣∣2

t − ∣∣s∗1∶j ∣∣2
]

=

¿
ÁÁÀt − ∣∣s∗i ∣∣2 −

∣∣s∗1∶i−1∣∣2∣∣s∗i ∣∣2
t − ∣∣s∗1∶i−1∣∣2

=

¿
ÁÁÀt(1 −

∣∣s∗i ∣∣2
∣∣s∗i∶T ∣∣2

) (3.55)
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If i ≠ T , then ∣∣s∗i ∣∣2
∣∣s∗i∶T ∣∣2 < 1 and thus Ri,i > 0. However, when i = T ,

R̀T,T =

¿
ÁÁÀt(1 −

∣∣s∗T ∣∣2
∣∣s∗T ∶T ∣∣2

) = 0.

For any s̃∗ such that s̃∗ ≠ s∗, let i be the largest integer such that s∗i ≠ s̃∗i ,

where 1 ≤ i ≤ T − 1. Then for any j ≤ i,

M̄s̃∗j∶T
≥

Ms̃∗i∶T

∥s∗j∶T ∥2 + ∣smax∣2(j − 1)
.

We now try to give a lower bound on
Ms̃∗

i∶T

∥s∗j∶T ∥2+∣smax∣2(j−1) . We can find the following

recursive expression for s̃∗i∶T based on (3.12):

Ms̃∗i∶T
= ∣

T

∑
k=i

R̀i,ks̃k∣2 +Ms̃∗i+1∶T

= ∣
T

∑
k=i+1

R̀i,ksk + R̀i,is̃i∣2,

where s̃∗i+1∶T = s∗i+1∶T , and Ms̃∗i+1∶T
= Ms∗i+1∶T

= 0 as shown similarly in the proof of

Theorem 3.3.1 (please also see (3.29)). Now we can write (3.11) as

Ms̃∗i∶T
= ∣

T

∑
k=i

R̀i,ksk − R̀i,isi + R̀i,is̃i∣2

= ∣ − R̀i,isi + R̀i,is̃i∣2 = ∣R̀i,i(̃si − si)∣2,

where we have used the fact that ∑Tk=i R̀i,ksk = 0, as shown similarly in the proof of

Theorem 3.3.1 (please also see (3.29)). Since s̃i − si ≠ 0 by assumption, and R̀i,i ≠ 0
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for i ≠ T according to Lemma 3.8.1, Ms̃∗i∶T
will not be zero either.

When s̃∗ ≠ s∗, Ms̃∗i∶T
is thus lower bounded by ∣R̀i,i(̃si − si)∣2, i < T . We thus

first lower bound R̀2
i,i = t(1−

∣∣s∗i ∣∣2
∣∣s∗i∶T ∣∣2 ). The smallest possible value for t is t = T ∣smin∣2,

where ∣smin∣2 is the minimum energy of any constellation point. Moreover, the

largest possible value for ∣∣si∣∣2
∣∣si∶T ∣∣2 is achieved only when i = T −1, ∣sT−1∣2 = ∣smax∣2, and

∣sT ∣2 = ∣smin∣2. Thus R̀2
i,i is lower bounded by T ∣smin∣2(1− ∣smax∣2

∣smax∣2+∣smin∣2 ) =
T ∣smin∣4

∣smax∣2+∣smin∣2 .

We further notice that the smallest possible value for ∥̃s∗i −s∗i ∥2 =Dmin. And,

the largest possible value for ∥s∗j∶T ∥2 + ∣smax∣2(j − 1) is T ∣smax∣2.

Combining the bounds on individual terms, under R̀, M̄s̃∗j∶T
is lower bounded

by

Dmin∣smin∣4
∣smax∣4 + ∣smin∣2∣smax∣2

.

Using a similar argument of R concentrating around R̀ in the proof of The-

orem 3.3.1, we can show that with high probability, under R, M̄s̃∗j∶T
is no smaller

than Dmin∣smin∣4
∣smax∣4+∣smin∣2∣smax∣2 .
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CHAPTER 4
EFFICIENT OPTIMAL JOINT CHANNEL ESTIMATION AND DATA

DETECTION FOR MASSIVE MIMO SYSTEMS

4.1 Joint Channel Estimation and Signal Detection (JED) for Massive MIMO

We consider a TDD massive MIMO wireless system with N receive anten-

nas at the base station, and M ≪ N user terminals each equipped with a single an-

tenna. We assume a discrete-time block flat fading channel model where the chan-

nel coefficients are fixed for a coherence time T . Across different fading blocks,

the channel coefficients take independent values from unknown distributions. We

model the uplink transmission of this system within one channel block by

X = HS∗ +W, (4.1)

where X ∈ CN×T is the received signal at the BS, S∗ is an M ×T matrix representing

the transmitted signal, whose entries are independent and identically distributed

(i.i.d.) symbols from a modulation constellation Ω (Ω can be of constant or non-

constant modulus, such as 16-QAM), W ∈ CN×T represents additive noises, and

H ∈ CN×M represents the unknown channel matrix. The elements of W are i.i.d.

random variables following circularly symmetric complex Gaussian distribution

N(0, σ2
w). In each channel coherence block, we further assume that the channel

coefficients are deterministic with no prior statistical information known about

them [19], [22].
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Since the channel coefficients take unknown deterministic values, we can

formulate the GLRT-optimal joint channel estimation and data detection as a mixed

optimization problem over H and S:

min
H,S∗∈ΩM×T

∥X −HS∗∥2, (4.2)

where ΩM×T represents the signal lattice of dimension M × T . We remark that

the GLRT-optimal detection is equivalent to ML detection for SIMO systems with

constant-modulus modulations, and for MIMO systems with equal-energy signal-

ing, when the channel coefficients are known to take i.i.d. circularly symmetric

complex Gaussian values [36].

We note that the combinatorial optimization problem in (4.2) is a least-

squares problem in H, while an integer least-squares problem in S∗, since each

element of S∗ is chosen from a discrete constellation Ω [30]. Hereby, for any given

S∗, the channel matrix H that minimizes (4.2) is given by Ĥ = X(S∗)†, where (⋅)†

and (⋅)∗ denotes the Moore-Penrose pseudoinverse and conjugate transpose of a

matrix respectively. Since (S∗)† = S(S∗S)†, Ĥ = XS(S∗S)†. Substituting this into

(4.2), we get

min
H,S∗

∥X−HS∗∥2 = min
S∗∈ΩM×T

∥X(I − S(S∗S)†S∗)∥2

= min
S∗

tr(X(I − S(S∗S)†S∗)X∗)

= tr(XX∗) − max
S∗∈ΩM×T

tr((S∗S)†S∗X∗XS), (4.3)
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where tr(⋅) is the trace of a matrix. To simplify the mathematical formulation, we

define Ξ to be a new M -dimensional constellation, each element of which is an M -

dimensional vector with its entries taking values from Ω. So the cardinality of Ξ is

∣Ω∣M . Then we can rewrite (4.3) as

tr(X∗X) − max
S∗∈Ξ1×T

tr((S∗S)†S∗X∗XS), (4.4)

where we use tr(X∗X) = tr(XX∗). Now by choosing ρmin to be the minimum

eigenvalue of X∗X, the minimization problem in (4.4) can be equivalently repre-

sented by the following optimization problem,

tr(X∗X − ρminI) − max
S∗∈Ξ1×T

tr((S∗S)†S∗(X∗X − ρminI)S), (4.5)

because tr((S∗S)†S∗(ρminI)S) is a constant. Since A = X∗X − ρminI is positive

semidefinite, we can factorize A = R∗R using Cholesky decomposition, where R∗

is the lower triangular matrix of Cholesky decomposition. Finally, using the trace

property for product of matrices, (4.5) can be transformed as follows:

tr(R∗R) − max
S∗∈Ξ1×T

tr((S∗S)†S∗R∗RS)

= min
S∗∈Ξ1×T

tr(R(I − S(S∗S)†S∗)R∗)

= min
S∗∈Ξ1×T

∣∣R∗ − S(S∗S)†S∗R∗∣∣2. (4.6)

Thus our goal is to minimize (4.6). We remark that this approach of transform-
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ing the GLRT-optimal detection to (4.6) is novel, very different from existing ap-

proaches for GLRT-optimal detection including the sphere decoder [30] which

only works for SIMO wireless systems. We also note that, the channel estimate

Ĥ = X(S∗)† can be used for downlink precoding after solving (4.6).

4.2 Efficient GLRT-Optimal JED Algorithm

Finding the optimal solution to (4.6) is a formidable task, since it requires

searching over all the ∣Ω∣MT hypotheses in the signal space. The exhaustive search

approach provides the optimal solution, however, its complexity grows exponen-

tially in the channel coherence time. In the special case of SIMO systems, the

sphere decoder efficiently solves GLRT-optimal detection (in a different format

from (4.6)) for both constant-modulus [30] and nonconstant-modulus constella-

tions [63]. However, the sphere decoders from [30] and [63] do not work for MIMO.

To describe our algorithm, we first introduce a tree representation of the

signal space. Recall that we use Ξ to represent the set of signal vectors of length

M , where each element of each vector takes value from the constellation Ω. We can

thus represent the set of possible matrices for S∗ by a tree of T layers. At a layer 0,

we have one root node. Each tree node at layer i, 0 ≤ i ≤ (T −1), has ∣Ξ∣ = ∣Ω∣M child

nodes. We use S∗
1∶i to represent the first i columns of S∗, and each possible matrix

for S∗
1∶i corresponds to a layer-i tree node. And we call the tree nodes at layer T

as leaf nodes, and thus each possible matrix for S∗ is represented by a leaf node.

Furthermore, for each possible matrix value for S∗, we define its metric by
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MS∗ = ∣∣R∗ − S(S∗S)†S∗R∗∣∣2. (4.7)

For a partial matrix S∗
1∶i, we define its metric by

MS∗1∶i
= ∣∣R∗

1∶i − S1∶i(S∗
1∶iS1∶i)†S∗

1∶iR
∗
1∶i∣∣2, (4.8)

where 1 ≤ i ≤ T , and R∗
1∶i is the first i rows of R∗. Thus solving (4.6) is equivalent

to finding an Ŝ∗ that minimizes MS∗ among all the possible matrix values for S∗.

To develop our algorithm, we have the following lemma about the comparison

between MS∗1∶i
and MS∗ .

Lemma 4.2.1. For every i ≤ T and any matrix value for S∗, MS∗1∶i
≤MS∗

Proof. We observe that MS∗ is the residual energy after projecting the columns of

R∗ onto the subspace spanned by the columns of S; and MS∗1∶i
is the residual en-

ergy after projecting the columns of R∗
1∶i (the first i rows of R∗) onto the subspace

spanned by the columns of S1∶i ( S1∶i is the just the first i rows of S). Since or-

thogonal linear projections minimize the residual energy among all linear projec-

tions, we can show, at the first i indices, the residual energy MS∗1∶i
after applying

orthogonal projections S1∶i(S∗
1∶iS1∶i)†S∗

1∶i to R∗
1∶i, will be no bigger than these indices’

residual energy (denoted by Q) after applying S(S∗S)†S to R∗. Moreover, for the

orthogonal projection S(S∗S)†S applied to R∗, the total residual energy MS∗ over

T indices is no smaller than the residual energy Q over the first i indices. Because

MS∗ ≥ Q and Q ≥MS∗1∶i
, we have MS∗1∶i

≤MS∗ .



www.manaraa.com

140

Algorithm 4: ML channel estimation and signal detection algorithm.
Input:radius r, matrix R, constellation Ξ and a 1 × T index vector I
Output:The transmitted signal S∗

1. Set i = 1, I(i) = 1 and set S∗
1∶i = Ξ(I(i)).

2. (Computing the bounds) Compute the metric MS∗1∶i
. If MS∗1∶i

> r2, go to 3;
else, go to 4;

3. (Backtracking) Find the smallest 1 ≤ j ≤ i such that I(j) < ∣Ξ∣. If there exists
such j, set i = j and go to 5; else go to 6.

4. If i = T , store current S∗, update r2 =MS∗1∶T
and go to 3; else set i = i + 1,

I(i) = 1 and S∗
1∶i = Ξ(I(i)), go to 2.

5. Set I(i) = I(i) + 1 and S∗i = Ξ(I(i)). Go to 2.

6. If any sequence S∗ is ever found in Step 4, output the latest stored
full-length sequence as the ML solution; otherwise, double r and go to 1.

Lemma 4.2.1 means thatMS∗1∶i
is a lower bound onMS∗ . Intuitively, suppose

that MS∗1∶i
is too big, then MS∗ must also be big, and S∗ will not minimize (4.6).

This motivates us to propose the following branch-and-bound algorithm for GLRT-

optimal JED. In this algorithm, we set a search radius r that uses to regulate a

depth-first search over the signal tree structure for the optimal solution to (4.6). In

fact, if MS∗1∶i
> r2, this algorithm will not search among the child nodes of S∗

1∶i. If

the optimal solution is not found under the current radius r, we will increase the

search radius r for new searches until the optimal solution is found.

Theorem 4.2.2. Algorithm 4 gives the optimal solution to (4.6).

This theorem is a result of Lemma 4.2.1 and the branch-and-bound search

over the signal space. In order to simplify the complexity analysis, we further
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modify step 6 of the ML algorithm: “If any sequence s∗ is ever found in step 4, the

output of the latest stored full-length sequence will be the ML solution; otherwise,

let r = ∞ and go to step 1”. We emphasize that this change will not effect the

optimality of the algorithm since setting r to take a big number will make sure it

will be bigger that the value of the metric of every possible transmitted sequence.

Furthermore, the corresponding change in the step 6 simplifies the computing the

complexity analyses since we will not deal will derive the complexity for possibly

recursively events of doubling the initial radius r if it is less that the MS∗ .

4.2.1 Metric Calculation and Initial Radius r

To compute MS∗1∶i
, we can have a constant computational complexity inde-

pendent of T , by recursive calculations over tree structure. The metric in (4.8) is

equivalent to

MS∗1∶i
= tr(R∗

1∶iR1∶i) − tr((S∗
1∶iS1∶i)†S∗

1∶iR
∗
1∶iR1∶iS1∶i). (4.9)

From (4.9), we can calculate the metric MS∗1∶i
efficiently. First, the term tr(R∗

1∶iR1∶i),

which represents the energy of matrix R1∶i, can be rather precalculated in advance

for each level i and hence used in the process of computing the metric in step 2

of the ML algorithm. Second, after defining a T ×M matrix Ai = R1∶iS1∶i, we can

update Ai+1 sequentially as Ai+1 = Ai + Ri+1∶i+1Si+1∶i+1. Similarly, we can define

M ×M matrix Bi = S∗
1∶iS1∶i and then sequentially update Bi+1 = Bi + S∗

i+1∶i+1Si+1∶i+1.

Furthermore, the complexity of calculating B†
i+1 is O(M2) using matrix inversion
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lemma, where B†
i+1 = (Bi + S∗

i+1∶i+1Si+1∶i+1)†. The complexity of all these recursive

updates do not depend on T (noting that only i rows of A are nonzero).

For large N , we can choose the radius r2 = cN , where c is any sufficiently

small constant (please the next section for justifications). In fact, we also proposed

best-first tree search algorithm to find the optimal solution while avoiding picking

an r beforehand.

4.3 Expected Computational Complexity

The computational complexity of our tree search algorithms is mainly deter-

mined by the number of visited nodes in each layer. By “visited nodes”, we mean

the partial sequences S∗
1∶i for which metric MS∗i

is computed. The fewer the visited

nodes, the lower computational complexity of our optimal channel estimation and

data detection algorithm is. In this section, we show that the expected number of

visited nodes will grow linearly with T under a sufficiently large number of re-

ceive antennas. To analyze the expected number of visited nodes, we assume that

the channel coefficients are i.i.d. complex Gaussian random variables following

distribution CN(0,1). We also assume that the M users send M orthogonal pilot

sequences between time indices 1 and M .

Theorem 4.3.1. Let M be fixed, and let r2 = cN , where c is any sufficiently small positive

constant. Then for the tree search algorithm, the expected number of visited points at layer

i converges to ∣Ξ∣ = ∣Ω∣M for i ≥ (M + 1), as the number of receive antennas N goes to

infinity. The tree based search algorithm visits only one tree node at each layer i < (M +1).
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Proof. (outline) We first prove that, the tree search algorithm only visits ∣Ξ∣ = ∣Ω∣M

nodes per layer when X∗X = E[X∗X], where the expectation is taken over the

distribution of channel coefficients. Then we show that, when N → ∞, X∗X/N →

E[X∗X]/N in probability and that the expected number of visited nodes at layer i

((M + 1) ≤ i ≤ T ) approaches ∣Ξ∣.

We first note that, the number of visited nodes at layer i ((M + 1) ≤ i ≤ T ) is

equal to ∣Ξ∣, if there is one and only one sequence S̃∗
1∶(i−1) such that MS̃∗

1∶(i−1)
≤ r2. Let

us consider the true transmitted sequence S∗ . Then we have

E[X∗X] = E[(HS∗ +W)∗(HS∗ +W)]

= SE[H∗H]S∗ +E[W∗W] + SE[H∗W] +E[W∗H]S∗

= NSS∗ +Nσ2
wI, (4.10)

where the second equality is from E[HH∗] = NI and E[H∗W] = 0.

Because SS∗ is of rank M with M < T , from (4.10), the minimum eigenvalue

of E[X∗X]/N is σ2
w. Then for the tree search algorithm (after scaling A by a con-

stantN ), A = E[X∗X]/N −σ2
wI = SS∗. From the Cholesky decomposition, we know

that A = SS∗ = R∗R. This means that the columns of R∗ span the same subspace

as the columns of S. Thus the metric MS∗ = 0, because ∣∣R∗ − S(S∗S)†S∗R∗∣∣2 is

precisely the residual energy after projecting the columns of R∗ onto the subspace

spanned by the columns of S. We can think of R as a mapping of M dimensional

space matrix S∗ onto T dimensional space. Since MS∗1∶i
≤MS∗ , MS∗1∶i

= 0 for all i.
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R̀∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
M 0 0 ⋯ 0

(S2S
∗

1 )
√

M

√
M− ∣(S2S

∗

1
)∣2

M
0 ⋯ 0

(S3S
∗

1 )
√

M

1
R2,2

[(S3S
∗

2 )−
(S3S

∗

1 )(S2S
∗

1 )
∗

M
] (4.12a) ⋯ 0

⋮ ⋮ ⋮ ⋮
(SM+1S

∗

1 )
√

M

1
R2,2

[(SM+1S
∗

2 )−
(SM+1S

∗

1 )(S2S
∗

1 )
∗

M
] (4.13a) ⋯ 0

⋮ ⋮ ⋮ ⋮
(ST S

∗

1 )
√

M

1
R2,2

[(STS∗2 )−
(ST S

∗

1 )(S2S
∗

1 )
∗

M
] (4.13b) ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.11)

From (4.10), each element in the T ×T matrix E[X∗X]/N will be SiS∗j +σw =

∑Tk=1 siks
∗
jk + σw, where S∗i is the i-th column of the transmitted signal S∗, and sik is

the k-th element of the i-th row of S∗. Thus we can express A = E[X∗X]/N − σ2
wI

as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M S1S∗2 ⋯ S1S∗T

S2S∗1 M ⋯ S2S∗T

⋮ ⋮ ⋱ ⋮

STS∗1 STS∗2 ⋯ M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now by using the Cholesky decomposition in [59], we can decompose A = R̀∗R̀

where R̀∗ is the lower triangular matrix of Cholesky decomposition. Thus we

can calculate the elements of matrix R̀∗ such as R∗
i,i =

√
ai,i −∑i−1

k=1R
∗
i,kRi,k, R∗

i,j =

1
Rj,j

(ai,j − ∑j−1
k=1R

∗
i,kRj,k) for 1 ≤ j < i ≤ T , and ai,j is an entry of A with row index i,

and column index j.

¿
ÁÁÀ

M − ∣(S3S∗1 )∣2
M

−
∣S3S∗2 ∣2 +

∣S3S∗1 ∣2∣S2S∗1 ∣2
M2 − 2Re{(S3S∗1 )(S2S∗1 )(S3S∗2 )}

M

R2,2

(4.12a)
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¿
ÁÁÀ

M − ∣(SM+1S∗1 )∣2
M

−
∣SM+1S∗2 ∣2 +

∣SM+1S
∗

1 ∣2∣S2S∗1 ∣2
M2 − 2Re{(SM+1S

∗

1 )(S2S∗1 )(SM+1S
∗

2 )}
M

R2,2

(4.13a)
¿
ÁÁÀ

M − ∣(STS∗1 )∣2
M

−
∣STS∗2 ∣2 +

∣STS∗1 ∣2∣S2S∗1 ∣2
M2 − 2Re{(STS∗1 )(S2S∗1 )(STS∗2 )}

M

R2,2

(4.13b)

Now we can use R̀∗ in (4.11) as the lower triangular matrix of Cholesky

decomposition to solve the minimization equation in (4.6). In fact, based on (4.10),

R̀∗R̀ = SS∗, and hence the metric Ms∗1∶T
(R̀) from (4.7) is

tr(SS∗) − tr((S∗S)†S∗SS∗S)

= tr(SS∗) − tr(SS∗) = 0.

Let us instead consider any signal matrix S̄ such that S̄ ≠ S and S̄∗
1∶M = S∗

1∶M

(namely S̄ shares the same pilot sequences as S). For such S̄, we can show that

∣∣R∗ − S̄(S̄∗S̄)†S̄∗R∗∣∣2 > 0, and that MS̄∗1∶i
> 0 for the first i such that S̄∗

1∶i ≠ S∗
1∶i. In

fact, MS̄∗1∶i
is no smaller than

D = min
i>M,S,S̄,S1∶i≠S̄1∶i

∣∣S∗
1∶i − S̄1∶i(S̄∗

1∶iS̄1∶i)†S̄∗
1∶iS

∗
1∶i∣∣2 > 0.

Thus for a search radius r2 < D, there will be only T tree nodes (namely those

from transmitted signal S∗ ) with metric no bigger than r2. This means that the

tree search algorithm will visit at most T ∣Ξ∣ tree nodes, under the assumption that

X∗X = E[X∗X].
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For massive MIMO systems, when N → ∞, X∗X/N → E[X∗X]/N in prob-

ability. In fact, we can show that, as N → ∞, with probability at least (1 − ε), the

tree search algorithm will visit at most T ∗ ∣Ξ∣ tree nodes, where ε > 0 is an arbi-

trary small number. With probability ε > 0, the tree search algorithm will visit at

most ∣Ξ∣T nodes. When N → ∞, ε can be pushed small fast enough such that the

expected number of visited tree nodes grows linear in T .

Moreover, we only needN to grow polynomially in T , in order to guarantee

that the expected number of visited tree nodes grows polynomially in T . In fact,

using large deviation bounds for the convergence of X∗X/N to E[X∗X]/N , we

have the following theorem.

Theorem 4.3.2. Let M be fixed, and let r2 = cN , where c is any sufficiently small positive

constant. Then we only need the number of receive antennas N to grow polynomially in

T , to guarantee that the expected number of visited points at layer i converges to ∣Ξ∣ for

i ≥ (M + 1).

4.4 Simulation Results

In this section, we numerically simulate the performance of our new GLRT-

optimal tree search algorithm, comparing it against suboptimal iterative and non-

iterative MMSE channel estimation and data detection schemes. We allow the re-

ceiver to know the first M columns of the transmitted signal S∗, which serve as

necessary orthogonal pilot sequences to guarantee good error performance. The

non-iterative MMSE channel estimation scheme first uses the disclosed pilot se-
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quences to perform MMSE channel estimation. This estimated channel will con-

sider fixed for the rest of coherent block length, and it will be used to detect the

transmitted information symbols through applying MMSE signal detection. The

iterative MMSE scheme iteratively exploits the detected data from the previous

iteration to perform channel estimation used for data detection in the current iter-

ation.

Throughout this section we consider different numbers of users M , 2 and 4,

and different values for the number of receive antennas, namely N = 50,100,200,

and 400. Although N = 50 may not be located under massive scale of receiving

antennas definition, considering it shows that our algorithm still efficient for con-

ventional MIMO systems. For constant modulus constellation, we normalize the

signal energy such that ∥Si,j∥2 = 1; furthermore, we define the signal to noise ration

(SNR) as SNR = E∣∣HS∗∣∣2
E∣∣W∣∣2 .

In Figure 4.1, we demonstrate the symbol error rate (SER) performance,

as a function of SNR, for 16-QAM modulation, non-constant modulus constella-

tion. The gain difference of our optimal noncoherent detection MIMO algorithm

is calculated compared with both non optimal iterative and non-iterative MMSE

schemes for M = 2, and T = 8. For 102 SER and N = 50, iterative MMSE channel

estimation scheme exhibits 5 db SNR loss in comparison with our tree search algo-

rithm. WhenN = 100, our method holds 6 dB gain over the iterative MMSE scheme

at 10−3 SER. Most importantly, our tree search algorithm guarantees providing the

GLRT-optimal solution.
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In Figure 4.2 we evaluate the average number of visited nodes of the tree

search algorithm per each coherent block for different SNR values. Here T = 8,

M = 2, and the modulation scheme is 16-QAM . We observe a tremendous reduc-

tion in the number of hypotheses that need to be tested, compared with exhaustive

search method. For instance, for N = 100 and SNR = 3 dB, exhaustive search re-

quires testing 2.81× 1014 hypotheses in each coherence block, while our tree search

algorithm visits only 5.5 × 104 tree nodes on average. For N = 500 and SNR = 6

dB, our tree serch algorithm visits (T −M) × ∣Ξ∣ ≃ 1500 nodes, which verifies our

result in Theorem 4.3.1. We remark that, using the same computer for simulation,

exhaustive search would need 3.52× 103 years to compute the optimal solution for

one channel coherence block.

Figure 4.3 shows the performance of tree search algorithm for an extended

number of receive antennas 200 for 16-QAM constellation. GLRT-optimal non-

coherent detection algorithm provides 6 dB gain compared with iterative MMSE

detection scheme. We can see that the optimal algorithm achieves higher gain dif-

ference for higher N compared with suboptimal schemes even for low SNR.

We plot the average number of visited points as a function of SNR in Figure

4.4, for QPSK modulation,M = 4, and T = 10. We observe that increasingN form 50

to 500 will greatly reduce the number of visited nodes. Exhaustive search would

need to examine 2.81 × 1014 hypotheses and will take 2000 years to calculate the

optimal solution for one channel coherence block.
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Figure 4.1: SER for iterative MMSE, non-iterative MMSE, and our optimal tree search al-
gorithm. M = 2, T = 8, and 16-QAM constellation.
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Figure 4.2: Average number of visited points for T = 8, and 16-QAM modulation. Exhaus-
tive search will instead need to test 2.8147 × 1014 hypotheses.
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Figure 4.3: SER for iterative MMSE, non-iterative MMSE, and our optimal tree search al-
gorithm. M = 2, T = 8, N = 200, and 16-QAM modulation.
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Figure 4.4: Average number of visited points for T = 10, M = 4, and QPSK modulation.
Exhaustive search will instead need to test 2.8147 × 1014 hypotheses.



www.manaraa.com

151

CHAPTER 5
CONCLUSIONS AND FUTURE WORK

In this thesis, we have presented novel optimal approaches to solve the

problem of joint channel estimation and data detection (JED) for large scale MIMO

systems. Massive MIMO is a new promising technology for next-generation wire-

less communication. When the number of the antennas at each base station of the

wireless network increases vastly, multiple users can be served simultaneously.

In fact, massive MIMO promises to fulfill the requirements of future applications

which need high-quality streaming, such as virtual reality and online games appli-

cations.

In Chapter two we proposed a new approach to solve the integer least-

squares problem using optimized Markov Chain Monte Carlo method. The pro-

posed MCMC method will, unlike simulated annealing techniques, have a fixed

temperature parameter in all the iterations, with the property that after the Markov

chain has mixed, the probability of encountering the optimal solution is only poly-

nomial small (i.e. not exponentially small). The optimal value of temperature

parameter for this approach has been calculated. To the authors’ knowledge, this

is a novel way of looking at solving the integer least-squares problem. From our

analysis, we can see there is a trade-off between faster mixing of the Markov chain

and faster finding the optimal solution in the stationary distribution. We also an-

alyzed the mixing time of the underlying Markov chain. It is also interesting to

extend this work to MIMO system with channel codes in future works.



www.manaraa.com

152

Existing GLRT-optimal joint channel estimation and signal detection (JED)

algorithms are limited to constant-modulus modulations or to SISO systems. More

importantly, none of these algorithms achieve the GLRT-optimal JED for massive

SIMO systems with general constellations while having a computational complex-

ity polynomial in T . In Chapter three, we overcome these limitations and advance

the state of the art for the GLRT-optimal JED for SIMO wireless systems.

We have proposed efficient GLRT-optimal JED algorithms for SIMO sys-

tems, including massive SIMO systems. Our algorithms apply to general constel-

lations, including nonconstant-modulus constellations. To the best of our knowl-

edge, our algorithms are the first set of efficient GLRT-optimal JED algorithms for

massive SIMO systems using general constellations. We are thus able to provide

the first set of error rate curves of the GLRT-optimal JED for massive SIMO wire-

less systems with general constellations. Our algorithms include a new breath-first

tree-search algorithm which can find the GLRT-optimal JED solution without re-

quiring any predetermined search radius.

Theoretically, we show that, under a large number of receive antennas in

massive SIMO systems, the computational complexity of our SIMO GLRT-optimal

algorithm will have an expected computational complexity polynomial both in

the channel coherence time T and in the number of receive antennas N . This is

somewhat surprising, since we have a large number of unknown complex chan-

nel coefficients to estimate, as the number of receive antenna increases in massive

SIMO systems. More importantly, we show that the polynomial growth of com-
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putational complexity is true, as long as the number of receive antennas grows

polynomially in T . This is also in great contrast to the exponential growth of the

sphere decoder’s complexity for coherent MIMO systems.

As a consequence of this work, we demonstrate the exact performance gap

between the GLRT-optimal and suboptimal JED algorithms for massive SIMO sys-

tems. In fact, we show significant performance gains of our optimal JED algo-

rithms for SIMO systems using nonconstant-modulus constellations.

We show in Chapter Four, for the first time, the performance of joint GLRT-

optimal JED algorithm of massive MIMO wireless systems for general constella-

tions. We have shown that, as the number of receive antennas grows large, the ex-

pected complexity of our proposed algorithm is polynomial in the channel coher-

ence time. Simulation results show that the GLRT-optimal algorithm has supreme

performance than suboptimal non-coherent data detection schemes.

Built on our previous work, in this section we will provide some future

research directions.

• Extending the MIMO detection algorithm to MU-MIMO systems.

So far we have discussed non-coherent signal detection for large scale MIMO

systems without considering the effect of neighboring cells on the algorithm

complexity and detection process. Considering a network with L cells and

K one antenna user terminals (UTs). Each cell deployed with one BS with

N antennas. During UL phase the channel model for MU-MIMO system can

be represented as a linear combination of channel matrices from all the cells,
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then the system model can be represented as:

yj =
L

∑
l=1

Hjlxl +wj, (5.1)

where yj is the received vector at the j-th base station, Hjl = [hjl1 hjl2 ⋯ hjlK]

is the N ×K channel matrix between the users of the l-th cell and the j-th BS,

xl is the transmitted vector from the users in cell l, and wj is a noise vector.

hjl1 is usually modeled based on a deterministic correlation matrix and inde-

pendent of fast-fading channel vector. The challenge here is the interference

term due to the transmitted signals from the all the active users in network

cells to the j-th BS,

yj =
L

∑
l=1,l≠j

Hjlxl

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Interference

+Hjjxj + nj.

One solution is by treating each cell separately, considering the interference

part, which comes from neighbor cells, as a part of the noise. In this way

we modify the problem into subcells channel estimation and signal detection

process. However, we need to use a representative channel model for MU-

MIMO systems. In other words, the channel model involves propagation

effect, and fast fading channel [11], [16].

• Designing optimal non-coherent detection algorithms for OSTBC systems.

We propose to design Exact GLRT JED for orthogonal space time block coded

(OSTBC) multiple input multiple output (MIMO) systems. An optimal blind
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data detection algorithm for general modulus constellations can be achieved.

OSTBC, including the Alamouti’s scheme [64], is one attractive MIMO com-

munication scheme because of its full diversity gain and high data rates.

We can choose M = 2 to match Alamouti’s OSTBC scheme with two transmit

antennas, and for the sake of simplicity of presentation. We remark, however,

that this results can be extended to general M . For the Alamouti’s scheme,

the transmitted data symbols S∗ is given by

S∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s1,1 −s∗2,1 s1,2 −s∗2,2 ⋅ ⋅ ⋅ ⋅

s2,1 s∗1,1 s2,2 s∗1,2 ⋅ ⋅ ⋅ ⋅

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T

where si,j (1 ≤ i ≤ 2 and 1 ≤ j ≤ T ) is the i-th information symbol transmitted

in the j-th space time block. The information symbols si,j’s are i.i.d. chosen

from a certain constellation Ω (such as BPSK and 16-QAM). We use S∗
j to de-

note the j-th block matrix If we let Ξ denote the set of legitimate forms for S∗
j

in OSTBC with cardinality ∣Ξ∣ = ∣Ω∣2. We denote them by Ξ(1),Ξ(2), ...,Ξ(∣Ξ∣).

Further assumes that H is deterministic unknown at the receiver. Then we

can solve the objective mixed optimization problem formulated below:

min
H,S∗∈ΞT

∥X −HS∗∥2. (5.2)

We can use our GLRT optimal algorithm that introduced in Chapter 4 to solve
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the problem efficiently.

• Designing an exact non-coherent signal algorithm for distributed MIMO (DMIMO)

systems Due to the installation structure and/or environment limitations, the

BS antennas could be distributed over a geographic area. One direction to

seek is the extension of our optimal non-coherent detection in a distributed

circumstances. Correlated and uncorrelated channel matrix can be addressed

in DMIMO.

• MCMC for non-coherent signal detection.

We study and analyze the detection of MIMO systems using MCMC ap-

proach. However, we assumed the matrix characteristics known at the re-

ceiver. An extension would be using MCMC for non-coherent signal detec-

tion. We can start initially with SIMO case using our proposed approach in

Chapter (3) to change the joint minimization over the system channel h and

transmitted signal s, into an equivalent minimization over s using Rs matrix.

Equivalently, we can replace s in the reversible MCMC detector algorithm in-

stead of the main minimization equation over the transmitted signal S.

p (ŝ(l+1)
j = ω ∣θ) = e−

1
2α2 ∥Rŝj∣ω ∥2

∑
ŝj∣ω̃ ∈Ξ

e−
1

2α2 ∥Rŝj∣ω̃ ∥2 , (5.3)
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